

WisDOT Structural Engineers Symposium

Program Agenda May 23, 2024

8:00 a.m.	Registration	11:40 a.m.	Geotechnical Updates (WBM preboring updates, drilled shaft
8:30 a.m.	BOS Director's Perspective – <i>Josh Dietsche</i>		projects, needs for borings, etc.) – Dave Staab
8:40 a.m.	Bridge Inspection and Maintenance Update – <i>Jason Lahm</i>	12:00 p.m.	Lunch/Networking
9:10 a.m.	BOS Initiatives/Policy & Standards Updates – James Luebke	1:00 p.m.	Consultant Review Updates – Najoua Ksontini
9:25 a.m.	Local Bridge Program & Asset Management Updates – <i>Laura</i>	1:15 p.m.	Federal Highway Updates – <i>Derek Soden</i>
	Shadewald	2:00 p.m.	Small Group/Table Discussion – All
9:45 p.m.	Best Practices for Constructability – Carolyn Brugman	2:20 p.m.	WisDOT's 1 st Design-Build Project from a Structures Perspective – <i>Bill</i> <i>Dreher (SRF), Vinod Patel (EXP),</i>
10:00 a.m.	Break/Networking (Beverages and Snacks)		Brent Freeman (Kraemer)
10:20 a.m.	Welcome & Secretary's Office Remarks – WisDOT Deputy	2:55 p.m.	Break/Networking (Beverages and Snacks)
	Secretary Christina Boardman	3:15 p.m.	Wisconsin Highway Research Program – James Luebke
10:25 a.m.	Structures Cost Estimating – Fred Schunke	3:30 p.m.	Ratings and Mega Loads – Alex Pence
10:45 a.m.	South Bridge Connector Update/ InfraWorks Overview – Mark Maday, Trey Horbinski (Jacobs)	3:45 p.m.	Interactive Survey & Q/A
11·20 a m	Small Group/Table Discussion – All	4:00 p.m.	Adjourn
11.20 a.III.	Jinan Group, rable Discussion - All		

Conference Location: University of Wisconsin-Madison Union South 1308 West Dayton Street Madison, WI 53715

For today's presentations, agenda, and proof of attendance, please visit:

http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnslt-rsrces/strct/research.aspx

WisDOT Maintenance Unit

Jason Lahm

BOS Structures and Repair Unit Supervisor/ UAS Pilot

2024 WisDOT Structural Engineers Symposium Madison, WI

May 23, 2024

Maintenance Unit Topics

- BOS Maintenance Section Organization
- Structures Inspection and Repair (SIR) Unit Organization
- Lift Bridge Unit
- UAS (Drone) Unit

BOS Maintenance Unit Organization

Josh Dietsche BOS Director

Dave Bohnsack BOS Chief

Jason Lahm SIR Unit Supervisor

Thomas Hardinger North Unit Supervisor

Julie Brooks
South Unit Supervisor

BOS Maintenance Unit Organization

Thomas Hardinger
North Unit Supervisor

Brady Rades
NER Program
Manager

Mariah Krueger NC Program Manager Kyle Harris

NW – Eu Claire

Program

Manager

Travis McDaniel
NW –Superior
Program
Manager

BOS Maintenance Unit Organization

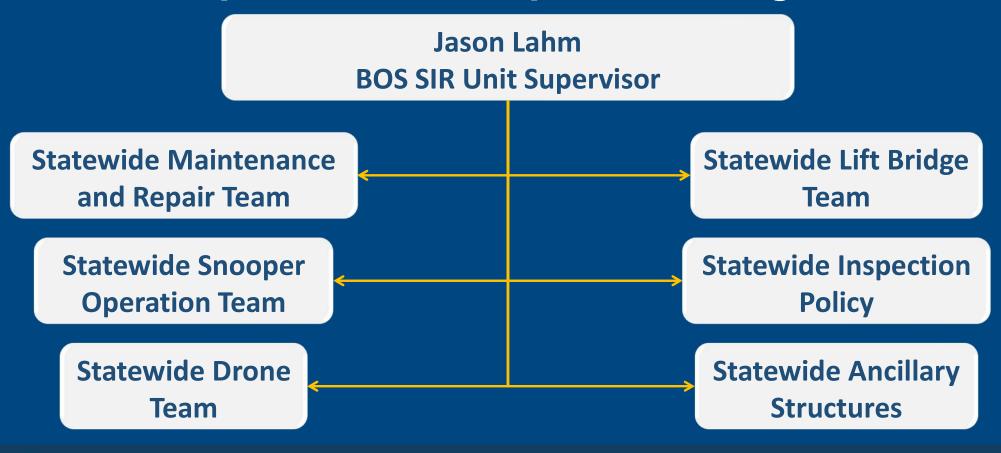
Julie Brooks South Unit Supervisor

Scott Reay
SER Program
Manager

Mike Williams SWR – Madison Program Manager

Craig Fisher

SWR – La Crosse


Program Manager

BOS Inspection and Repair Unit Organization

Lift Bridge Team

- Jason Lahm, Lift Bridge Team Supervisor
- Jim McDowell, PM Lift Bridge Team
- Lift Bridge Team Members: Emerson H, Mark R, Joel Mass, Max K, Andrew Smith

Why a Lift Bridge Team?

- Build Expertise
- Improved QC/QA Process
- More Efficient Use of State Funds
- Statewide Resource
- Communication Between Owners

UAS (Drone) Team

- Jason Lahm, Drone Team Supervisor (UAS Pilot)
- Steve Doocy, Lead Drone Pilot (UAS Pilot)
- Anthony Stakston, Lead EMILY Boat Captain (UAS Pilot)
- Currently WisDOT has 10 Additional Bridge Inspectors/ UAS Pilots.

Why UAS (Drone) Team?

- Structure Inspection
- Modeling
- Ancillary Structure Inspections
- Mapping
- Public Relations
- Quantity Calculations

Policies

- Personnel
 - 2-person team Pilot and Inspection TL
 - Pre-flight meeting and form
- All drones use tracked in Aloft
 - Land and Water Based Included
- Drones are used as to supplement the inspection

Unmanned (Drone) Vehicles

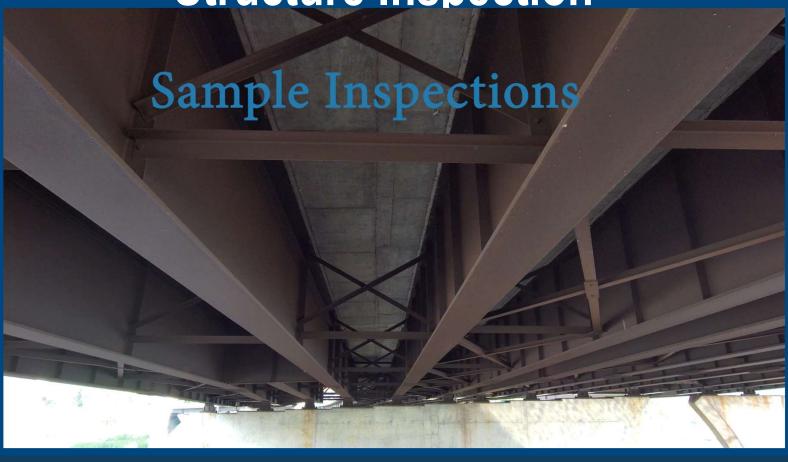
Air Land Sea (8x)(x1)(x1)(x1)(x1)

(x1)

- Structure Inspections
 - Saving Time and Tax dollars
 - No Traffic Disruptions
 - Keeping Employees safe
 - Video and picture records
 - View areas hard to reach
- Modeling
 - Accurate material storage amounts
 - 3D bridge Models

- High Mast Lighting Inspections
 - Very difficult to inspect
 - Inspector needs to climb or rent very expensive equipment
 - Complete a safe inspection
- Mapping
 - Wetland Mitigation Monitoring
- Public Relations
 - Present and Past Project Photos

- Quantity Calculations
 - Deck Cracking
 - Slat Shed Quantity
 - Stockpile Quantities
- Flooding Monitoring
 - Waterway Movement
 - Slope Failures



Structure Inspection

Structure Inspection

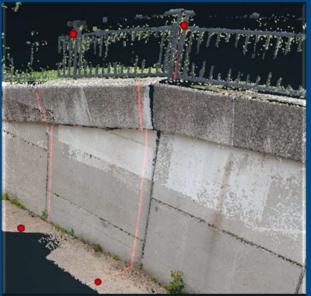
Structure Inspection

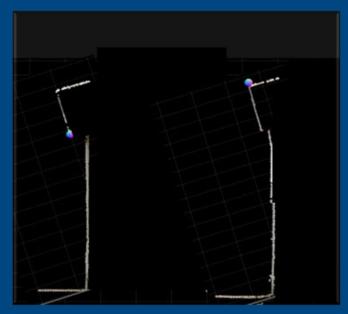
Structure Inspection Top of Deck Cracking (8000' Long Bridge)

Deck Thermal Imaging Identifying Concrete Delaminations

Deck Thermal Imaging

Deck Thermal Imaging



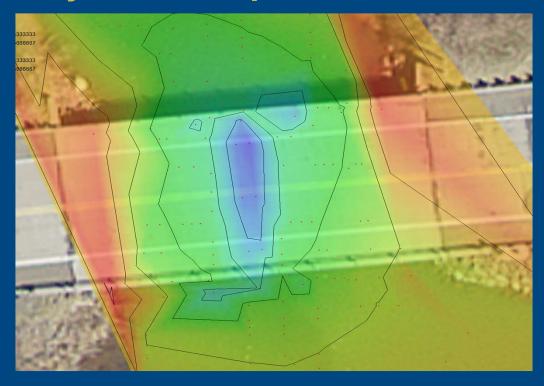


Retaining Wall Inspection

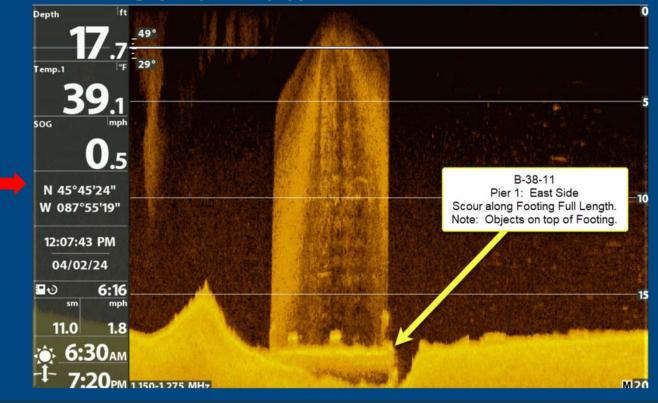
Retaining Wall Movement

EMILY Boat Sonar

EMILY BoatSonar



EMILY BoatBathymetric Map from EMILY Boat



EMILY Boat

Sonar Data

	Pier 1		
	X		
	Level II		
	SOLID SHAFT		
	19.0		
	Silt w/ Cobbles		
	No		
	N/N		
	N/N		
	Surface Supplied Air		
t s	Pier 1 footing was exposed 1.5 ft max vertically. Concrete surface has scaling		
	up to 1/2 inch maximum from 6 inches above waterline to 1.5 feet below waterline.		

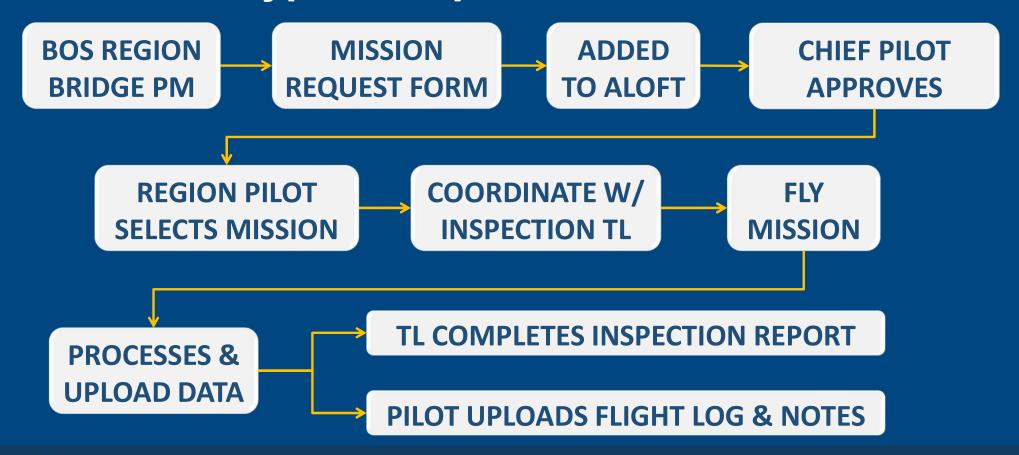
Underwater Verification - ROV

Underwater Verification - ROV

Underwater Verification - ROV Assessment of Mysterious Sonar Data

Underwater Verification - ROV

Data


- Raw Photos & Video
- Sonar
 - Point cloud
 - Sonar images
- Processed Data
 - Orthomosaic Images
 - Photogrammetry Images
 - Point Clouds & CADD models
 - Sonar Bathymetry
 - Testing the creation of Digital Twins

Typical Department Mission

BOS Initiatives/Policy & Standards

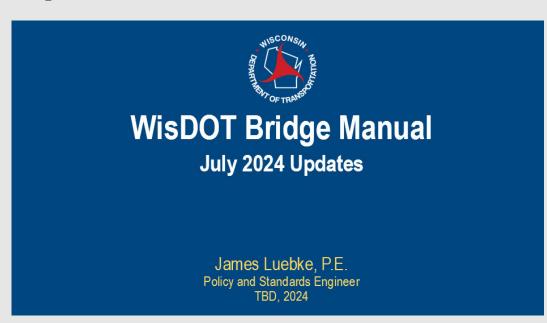
James Luebke P.E. Policy and Standards Engineer

WisDOT Structural Engineers Symposium University of Wisconsin-Madison Union South, Madison WI

May 23, 2024

Overview

- Bridge Manual Update Webinars
- Concrete Box Culverts
- Other Updates
- What is Next?



Bridge Manual Update Webinars

Next Update: August 2024

Questions: James.Luebke@dot.wi.gov

Bridge Manual Update Webinars

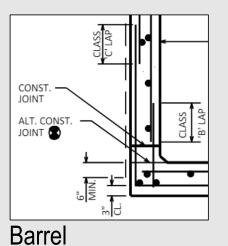
 To be added to email distribution list → Search "WisDOT Bridge Manual Email List"

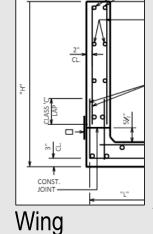
- To be removed from email distribution list:
 - Send an email to James.Luebke@dot.wi.gov

Concrete Box Culverts

Overview:

- Details
- Precast Allowances
- ASTM C1577
- Items Under Development

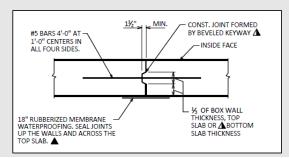




Construction Joints

- Horizontal
 - Barrel (RMW not required)
 - Wing (RMW required)*

*epoxy coated bars and no alt jt.



Construction Joints

- Vertical
 - Barrel (Top and Sides)
 - Barrel (Bottom)*

▲ IN LIEU OF KEYED CONST. JOINTS IN THE BOTTOM SLAB, THE CONTRACTOR MAY USE 2" DEEP SAW CUTS WITHIN 12 HOURS AFTER POURING. #5 BARS 4'-0" AT 1'-0" CENTERS REQUIRED FOR KEYED CONST. JOINTS AND SAW CUT

Std. 36.03 (Draft July 2024)

*#5 bars required (formed jt. and saw cut jt.)

Sheet Waterproofing Membrane

- Sheet Membrane Waterproofing for Asphalt Overlays (516.0600.S)
 - Asphalt Overlays (PMA Overlay Alternative)
- Sheet Membrane Waterproofing for Buried Structures (516.0610.S)
 - Buried Bridge Structures (epoxy bars in top slab)
 - CIP Pedestrian Underpasses
 - Buried Culvert Structures with low-fills (under development)

Coarse Aggregates

Breaker Run Substitution:

- Coarse Aggregate #1
 - → AASHTO No. 67
- Coarse Aggregate #2
 - → AASHTO No. 4
- APS 6 Gradations (Std. Spec. 310 & 604)

TABLE 501-4 AGGREGATE MASTER GRADATION LIMITS								
	FINE AGGREGAVE	COARSE AGGREGATE		COMBINED AGGREGATE GRADATION		OPTIMIZED AGGREGATE GRADATION (OAG)		
SIEVE		SIZE NO. 1 AASHTO No. 67 ^[1]	SIZE NO. 2 AASHTO No. 4 ^[1]	STANDARD	100 % PASSING 1-inch sieve	TARANTULA CURVE GRADATION BAND		
	(% passing by weight)					(volumetric % retained)		
2-inch	_	_	100	100	100	0		
1 1/2-inch	/	_	90 - 100	96 - 100	100	<= 5		
1-inch		100	20 55	70 - 99	100	<= 16		
3/4-inch	/_	90 - 100	0 - 15	55 - 96	95 - 100	<= 20		

2023 Std. Spec.

	TABLE 501-4 AGGREGATE MASTER GRADATION LIMITS							
		COMBINED AGGRE	EGATE GRADATION	OPTIMIZED AGGREGATE GRADATION (OAG)				
	SIEVE	STANDARD	100 % PASSING 1-inch sieve	TARANTULA CURVE GRADATION BAND				
		(% passing	by weight)	(volumetric % retained)				
	2-inch	100	100	0				
	1 1/2-inch	96 - 100	100	<= 5				
	1-inch	70 - 99	100	<= 16				
	3/4-inch	55 - 96	95 - 100	<= 20				

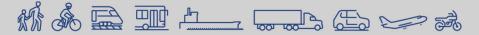
2024 Std. Spec.

Precast Allowances

- Historically, Contract plans with CIP design and details with precast allowance
- The designer shall determine if a noted precast allowance is appropriate on a project-by-project basis. This includes the barrel and wingwalls.
- Precast Design:
 - Barrel → ASTM C1577, Standards, and STSP
 - Wingwalls → Standards and STSP

Precast Allowances

- Several conditions where a noted allowance for precast may not be suitable for a project:
 - Openings not covered by ASTM C1577 (>12 ft spans or twin cell)
 - Depth of cover is less than 2 ft while supporting traffic loads
 - Pedestrian underpasses
 - Unique hydraulic conditions or other factors



Precast Box Culverts

- ASTM C1577 Includes:
 - Single-cell precast box culverts
 - Standard Openings (3-ft by 2-ft to 12-ft by 12-ft)
 - Design fills (20 ft to 30 feet)
 - Provides wall and slab thicknesses and reinforcing areas

Precast Box Culverts

- ASTM C1577 Includes:
 - Design Criteria (Appendix X1)
 - Span: 12-ft maximum standard opening
 - Load: HL-93 live load without the lane load
 - Materials: f'c=5 ksi, fy=65 ksi
 - Arrangement: A slab thickness of 1/12 the span (or greater)

Precast Box Culverts

- ASTM C1577 Special Design (under development):
 - Design Criteria (Appendix X1)
 - Span: Maximum WisDOT allowance
 - Load: HL-93 live load with the lane load (for L>12ft)
 - Materials: Higher strengths (f'c=6 ksi, fy=80 ksi)
 - Arrangement: Crack and deflection control limits

Precast Box Culvert (Under development)

- Standards
- Special Provision
- Bridge Manual

Items:

- Fills less than 2-ft
- Construction details (e.g. joint ties)
- Maximum permissible joint opening
- Undercut and backfill notes
- Precast walls

What is Next?

- Bridge Manual Release End of July 2024
- Bridge Manual Release Webinar August 2024
- AASHTO LRFD 10th Edition End of 2024?
- WHRP Implementation

Questions

James Luebke, PE
<u>James.luebke@dot.wi.gov</u>
(608) 266-5098

Local Structures Topics & Updates

Laura Shadewald Structures Development Chief

WisDOT Structural Engineers Symposium UW-Madison Union South, Madison, WI

May 23, 2024

Local Structures Topics and Updates

- Trans 212/213 Updates
- Local Structures 6-20 Feet
- Open Railings vs. Parapets

- First Adopted in 1982
- Revised 2-3 times
- Remained static since 1999

HOME SENATE ASSEMBLY COMMITTEES SERVICE AGENCIES

- inventory means the gamering and reporting of all information required on the bridge inventory form adopted by the
- (7) "Posting" means the placement of regulatory signs at a bridge indicating the safe load-carrying capacity of the bridge.
- (8) "Rating" means determining the safe load-carrying capacity of a bridge.

History: Cr. Register, February, 1982, No. 314, eff. 3-1-82; am. (1) and (8), Register, July, 1992, No. 439, eff. 8-1-92; correction in (3) to (

Trans 212.03 Application of chapter. The bridge inspection and inventory standards in this chapter apply to all highwa railroad traffic and bridges used only by pedestrians, bicycles, and recreational vehicles are excluded from the application History: Cr. Register, February, 1982, No. 314, eff. 3-1-82.

Trans 212.04 Responsibility for inspection. The responsibility for the continuing inspection program shall be as follo

- (1) The department shall inspect highway bridges on the state trunk highway system and all other bridges for which the dep
- (2) Each local authority or other authority having jurisdiction over a non-department maintained bridge shall inspect the high
- (3) When the department determines that a local authority or other authority having jurisdiction over a non-departmental m county highway commissioner of the county in which the bridge is located of the inspection failure and shall direct the direction, the county shall perform the bridge inspection or cause it to be performed.

History: Cr. Register, February, 1982, No. 314, eff. 3-1-82; emerg. cr. (3), eff. 8-20-85; cr. (3), Register, April, 1986, No. 364, eff. 5-1-86.

Trans 212.05 Qualification of personnel. Individuals involved in the inspection of bridges as required by this chapter s History: Cr. Register, February, 1982, No. 314, eff. 3-1-82.

Trans 212.06 Frequency of inspections.

- (1) State-owned or state-maintained bridges shall be inspected at regular intervals not to exceed 2 years.
- (2) Locally owned bridges shall be inspected at regular intervals not to exceed 2 years.
- (3) The maximum inspection interval specified in subs. (1) and (2) may be increased from 2 years to no more than 4 years to

- Trans 212: Standards for the Inspection of Bridges in WI
 - Propose Update to:
 - Consistent with current inspection standards & procedures
 - Update obsolete language & terminology
 - Ensure compliance with 23 CFR Part 650 Subpart C Final Rule on National Bridge Inspection Standards, effective 2022

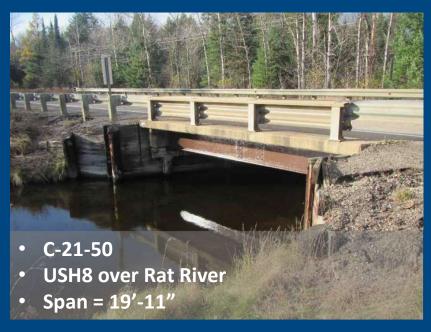
- Trans 213: Local Bridge Program
 - Broaden eligibility for funding of local bridges
 - "Sufficiency Rating" outdated, no longer used nationally
 - Appropriately identify timely bridge improvement work
 - Preserve and extend the life of bridges

- Draft language is almost complete
- Next Steps:
 - Rule Drafting, Analysis and Fiscal Estimate
 - Prehearing materials that are reviewed and approved by DOT
 - Stakeholder outreach
 - Clearinghouse Rules, Public Hearing, Legislative Review
 - Final Rule Published
- Draft rule will be in effect for the next local program cycle Spring 2025

Local Structures 6 – 20ft Program Overview

Overview of the Issue

- Structures (local system) under 20ft long...
 - ...have no inventory requirements.
 - ...have no inspection requirements.
 - ...have no load rating requirements.
 - ...are NOT eligible for federal bridge rehabilitation and replacement funding.



Overview of the Issue

Bridges and "not bridges" can look and act very similar

NOT A BRIDGE

BRIDGE

Overview of the Issue

• Small structures can still present issues...

...and require funding to repair or replace.

Wisconsin 2023 – 25 State Budget

Budget Language

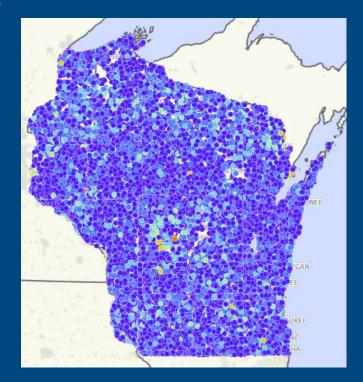
Provides \$12,500,000 SEG to JCF's supplemental appropriation in FY24 for assessment of local bridges and culverts and create a biennial DOT SEG appropriation that could receive the funds. Directs the Department to develop a program for counties to assess local bridges and culverts that are less than 20 feet, but greater than six feet in length.

• State Statute 85.64

The department shall administer a program for counties to inventory and assess the condition of local bridges and culverts that are 20 feet or less in length but greater than 6 feet in length.

Wisconsin 2023 – 25 State Budget

- Collaborative effort to "develop a program"
 - Wisconsin DOT
 - Wisconsin Towns Association
 - League of Wisconsin Municipalities
 - Wisconsin Counties Association
 - Wisconsin County Highway Association



Size of the Local Inventory

- Approximately 25,000 structures that meet criteria
 - WisDOT GIS mapping
 - Extrapolation from state-owned data
 - Local owner survey
- WisDOT provided information on possible locations

Phased Approach

- Working with local owner representatives on a phased approach:
 - Inventory
 - Inspection
 - Load rating as needed and pending available funds

Phase 1: Inventory Information

- No qualifications for person collecting this information
- WisDOT Bureau of Structures provided direction/training
- Data uploaded to the Highway Structures Information System (HSIS)
 - Name of person collecting information
 - Date of inventory
 - Owner
 - County
 - Municipality
 - Feature on (roadway name/number)
 - Number of lanes on structure
 - Feature under (if known)

- Location (Latitude / Longitude)
- Location description (distance from an intersection)
- Total structure length
- Structure type (pipe culvert, box culvert, girder bridge, etc.)
- Structure material (concrete, steel, etc.)
- Weight limit (if posted)
- Concerns identified

Phase 2: Inspection

- Inspections performed by Wisconsin certified bridge inspectors (about 300 in the state)
- Based on National Bridge Inspection (NBI) rating scale (0 − 9)
 - 0-2: Severe condition
 - \blacksquare 3 4: Poor condition
 - 5 6: Fair condition
 - 7 9: Good condition
- WisDOT Bureau of Structures provided direction/training

Load Rating

- As deemed necessary and pending availability of funds, perform load ratings to ensure safety
 - Determining if the structure can safely carry legal-weight vehicles
 - Load post as necessary
- Performed by structural engineers
- Contracting and reimbursement mechanism pending availability of funds

Looking Ahead

- Information is being gathered for two reasons:
 - Ensure these structures are safe for the travelling public
 - Support future budget proposals for rehabilitation & replacement funding
- Future funding is not guaranteed, but collecting information on the size, nature, and condition of the small structure inventory is a necessary first step.

Open Railings vs. Parapets

- Parapets preferred/required on state system
- Open railing used more frequently on local structures
- Lots of issues when open railing is used

- Initial Cost
 - Open Railing: \$300-\$400/LF
 - Parapet:
 - 32SS: \$150/LF
 - 42SS: \$185/LF

- Minimum grade 0.5%
 - 30' Long Structure = 1.8"
 - 50' Long Structure = 3"

- What are we asking?
 - Consider all the options, including parapets
 - Educate the local owners initial and long-term costs
 - Help us build more sustainable bridges!

Any Questions?

Best Practices for Constructability

Carolyn Brugman, PE Structures Construction Program Manager

2024 WisDOT Structural Engineers Symposium UW-Madison Union South, Madison, WI

May 23, 2024

Outline

- Considerations during design to help construction go smoothly
- Construction questions and issues we see that can be addressed during design

Removing Structure over Waterway

Issue

 Selection of the incorrect bid item - Remove Debris, Minimal Debris, or Debris Capture

 Following DNR initial recommendation without coordination

Removing Structure over Waterway

Solutions

 Select bid item based on structure type - WBM

> CMM 645.6 contain example removal plans for each item

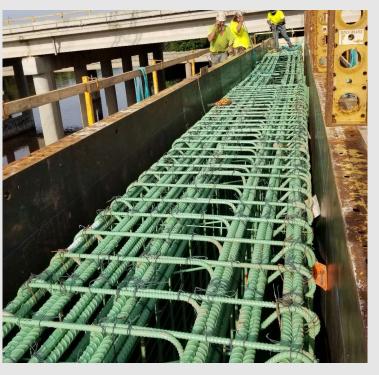
- Coordinate with DNR and Regional Environmental Coordinator
- Coordinate with BOS on unique structures/situations

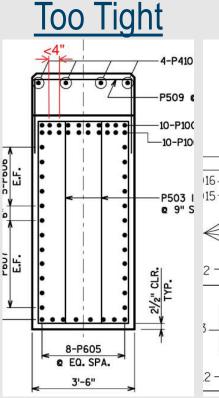
Pile Conflicts and Removing Piling Considerations

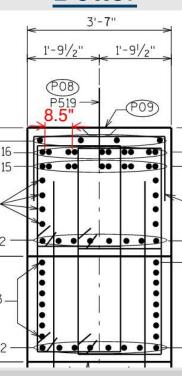
- Verify locations of existing piling vs. proposed
 - Offset proposed substructures from existing
 - Space new piling to avoid existing
 - If neither is possible, include removing existing piling SPV

Rebar Congestion Issue

- Tight rebar spacing makes consolidation around rebar difficult
 - Leave enough space for vibrator






Rebar Congestion Solutions

- Stagger lap splices
- Bundle bars
- Multiple rows of rebar
- Upsize members

Small (or Large) Haunches **Include Plan Note**

- When haunches less than 1 1/4" or greater than 8" are expected
 - Draws attention to contractor that alternate forming methods may be required

GIRDER HAUNCHES ARE EXPECTED TO BE LESS THAN 1.25" IN SOME AREAS, TRADITIONAL DECK FORMING SYSTEMS MAY NOT BE SUITABLE.

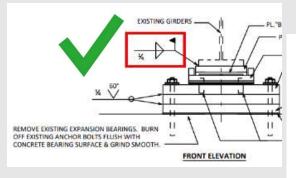
GIRDER HAUNCHES ARE EXPECTED TO BE GREATER THAN 8" IN SOME AREAS. TRADITIONAL DECK FORMING SYSTEMS MAY NOT BE SUITABLE

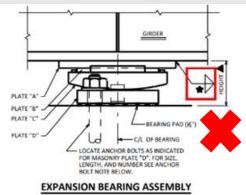
Complex Geometry Considerations

- Tapers
 - Material cost vs. labor cost
- Superelevation Transitions
 - Difficult to get right with finishing machine

Existing Conditions for Rehabs

- Verify Scope of Work
 - Review inspection reports/scoping notes
 - Secondary maintenance items
- Check most recent inspection reports
- Field verify bearing heights for bearing replacements





Existing Conditions for Rehabs

 Pay attention to existing expansion end diaphragm height for joint replacements

 Field Welding Details for Bearing Replacements

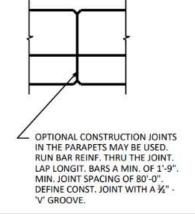
Roadway Design Coordination Transition from Road to Bridge

- Scope of bridge rehab work (and how this impacts approach road)
 - Replacement of concrete approach needed for redeck/overlay?
 - Pavement replacement directly behind the paving block
- Transition between road and bridge
 - Parapet transitions
 - Curb/sidewalk locations and transitions
 - Grading in Vicinity of Structure

Roadway Design Coordination

(cont.)

- Get updated files from roadway designer frequently
 - Profile
 - Alignments
 - Typical Section/X-Slopes/Transitions
 - Utility (Name & Work Plan)
 - Bridge Layout



Miscellaneous Considerations

- Concrete Overlay Staging
 - Construction joints at crown/grade break
- Temporary Support SPV
 - Calculations to determine necessity
- Parapet Optional Joints
 - Remove optional construction joint if bridge is less than 80' long

Miscellaneous Considerations

(cont.)

Soldier Pile Walls

- Piles and tiebacks are considered primary members but soldier pile fabricators can be from "Fabricated Bridge Components" or "Primary Members" APL
- Add note to plans that all welding needs to conform to AWS D1.5

Box Culverts

 Consider if inclusion of precast box substitution note is appropriate per WBM

Questions?

Structures Cost Estimating

Fred Schunke NCR Design QA Engineer

WisDOT Structural Engineers Symposium

May 23, 2024

Lesson Objectives

 Share where structure estimating guidance is in the FDM

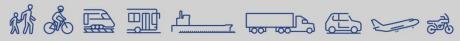
 Review commodity trends and share how to adjust historic prices.

 Share some guidance to develop final estimates including updates to the Similar Projects Tool, Bid Express User Guide and plan locations.

FDM 19-5 Estimates

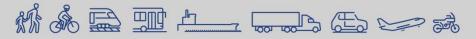
Sections Relevant for Today

- FDM 19-5-5 noted in the Bridge Manual 5.3
- Google WisDOT FDM
- WisDOT Webpages
 - Doing Business > Engineers and consultants >
 Structure and road resources
 - Listed under Standards and manuals


FDM 19-5 Estimates

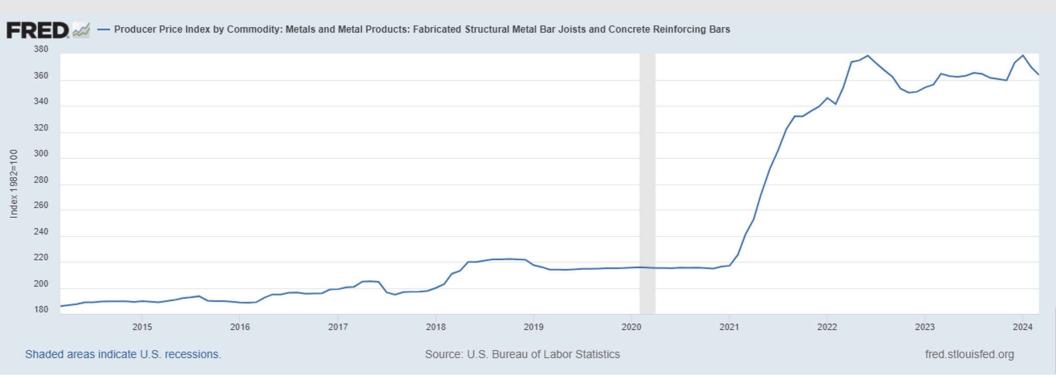
Sections Relevant for Today

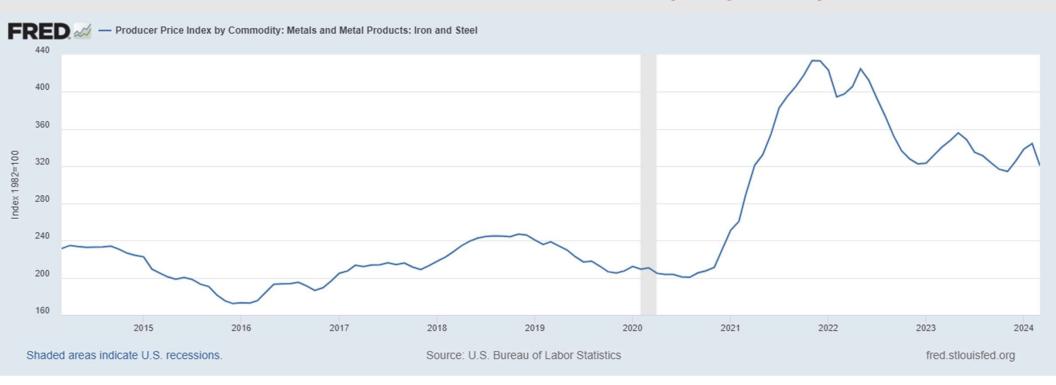
- FDM 19-5-5.5 Tools and Resources (pg. 13-17)
 - Bid Express
 - Similar Projects Tool
 - Other Tools and Resources
 - Plans, Proposals, Addenda and As-builts


FDM 19-5 Estimates

Sections Relevant for Today

- FDM 19-5-5.6.3 Bid Item Estimating Guidance (pg. 20-21)
 - Concrete Masonry Bridges
 - Concrete Masonry Overlay Decks
- FDM 19-5-5.6.4 Unit Price Guidance (pg. 22)
 - Adjusting Unit Prices
 - WisDOT Chained Fisher Construction Cost Index

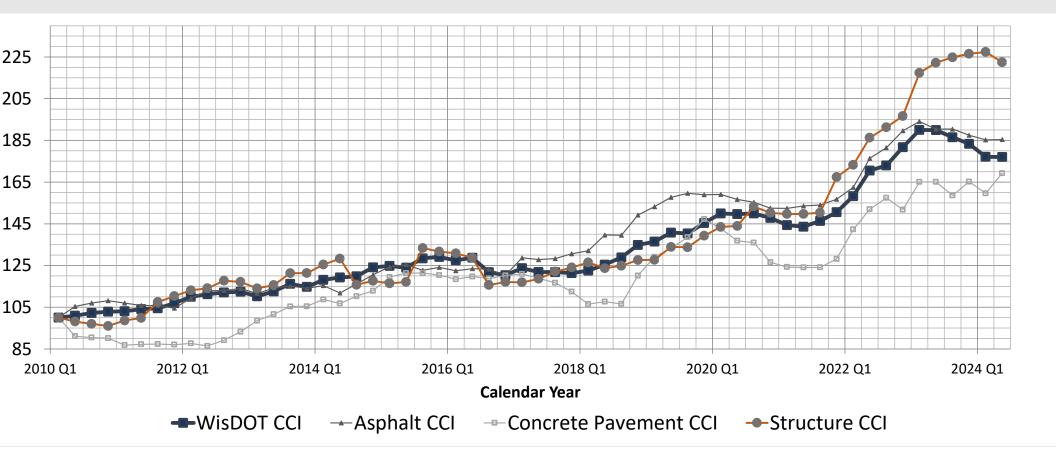



Producer Price Index Commodities

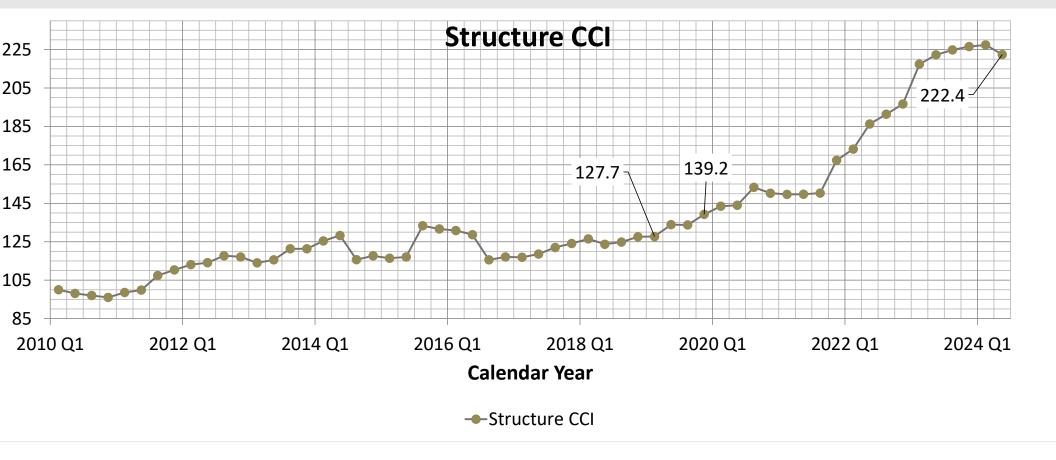
Nationwide Concrete Reinforcing Bars (10 years)

Producer Price Index Commodities

Nationwide Iron and Steel (10 years)



Producer Price Index Commodities


Nationwide Cement (10 years)

WisDOT Chained Fisher Construction Cost Index

Adjusting Unit Prices

- Guidance in FDM 19-5-5.6.4 (page 21)
- Do not forecast prices past the current date
- Used to convert past prices into current dollars without recent bid history
- Adjusting prices using the WisDOT CCI is approximate
 - But will provide a better estimate
- Recent price trends for bid items will always be more reliable

Adjusting Unit Prices

- Use a ratio from past and current index values to convert past prices into current dollars
- $\frac{Current\ Index\ Value}{Past\ Index\ Value} \times Past\ Bid\ Price = Current\ Bid\ Price$
- Example:
 - Jan. to Dec. 2019 price = \$166 Total SF Cost
 - Past Index Values = 127.7 to 139.2, using 137
 - Current Index Value = 222.4
 - $=\frac{222.4}{137} \times \$166 = \$269 \text{ or } \270 rounded

Adjusting Unit Prices

Estimator Prices do not need to be adjusted

Concrete Masonry Bridges

FDM 19-5-5.6.3 Bid Item Estimating Guidance

- Regression prices should not be used
 - Prices vary for slab-spans, girder and rehabilitated bridges
 - Concrete Masonry Bridges, Removing Structure and Excavation for Structures should be estimated at the same time with the same bid data and contractor
 - Each contractor will bid these items differently
 - May need to look at losing bid prices

PS&E Estimates

- Finding similar bridges in the HSI
 - No recent bridges
 - Easy to find similar bridges
- Bid Express, Similar Projects Tool and Let Plans
 - All recent and historic bridges
 - More effort required

Removing Structure Over Waterway

"Average" Price Differences

	Removing Structure Over Waterway Remove Debris	Removing Structure Over Waterway Minimal Debris	Removing Structure Over Waterway Debris Capture
No. of Structures	28	116	11
Minimum	\$6,039	\$4,289	\$41,100
Maximum	\$737,500	\$2,443,750	\$378,461

Removing Structure Over Waterway

"Average" Price Differences

	Removing Structure Over Waterway Remove Debris	Difference	Removing Structure Over Waterway Minimal Debris	Difference	Removing Structure Over Waterway Debris Capture
25th Percentile	\$18,738	\$25,236	\$43,974	\$39,231	\$83,205
Median	\$57,261	\$16,071	\$73,332	\$53,321	\$126,653
75th Percentile	\$83,607	\$40,624	\$124,230	\$62,470	\$186,700

Removing Structure Over Waterway

"Average" Price Differences

	Removing Structure Over Waterway Remove Debris	Difference	Removing Structure Over Waterway Minimal Debris	Difference	Removing Structure Over Waterway Debris Capture
Typical Ranges	\$19,000 to \$84,000	\$16,000 to \$41,000	\$44,000 to \$124,000	\$39,000 to \$62,000	\$83,000 to \$187,000
Below Typical	<\$19,000	increase 100% decrease 50%	<\$44,000	increase 100% decrease 50%	<\$83,000
Above Typical	>\$84,000	increase 50% decrease 33%	>\$124,000	increase 50% decrease 33%	>\$187,000

Bid Express User Guide

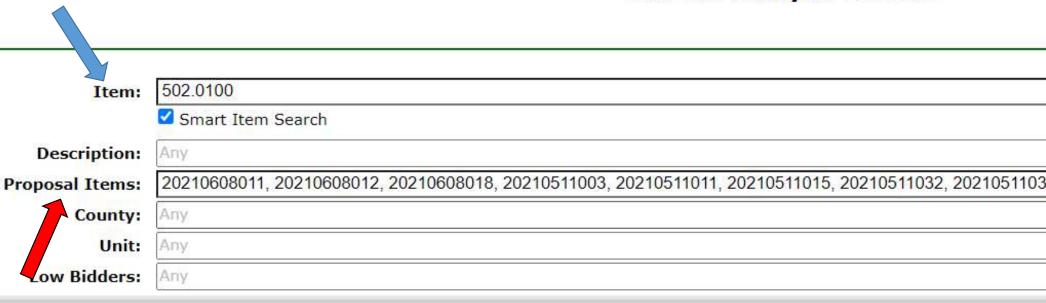
- Linked in FDM 19-5-5.5.1 Primary Tools pg. 13-14
 - Linked in the Estimating Tools Pages
- Introduction pg. 2-3
 - Start up
 - Bid Express Overview
- Looking up bid history and bid tabulations pg. 4-7
 - Guidance for what to enter in bid history fields
 - Steps to review and obtain results

Bid Express User Guide

- Tips and Tricks pg. 8-24
 - Step-by-step guides with screen captures
 - Finding proposal, project or bid information with any project or structure ID
 - Finding structure information
 - Filter and graph Bid Tab Analysis results in Excel
- Appendices pg. 25-29
 - County and region map
 - County and region codes

Similar Project Tool Updates

- Copy Proposal IDs for BidX Button has been added
- Proposal IDs may be filtered
 - Bridge Replacement or Rehabilitations for structure items
 - Reconstruction or resurfacing/pavement replacements for sidewalk, earthwork and aggregates
 - Broad filters recommended



Similar Project Tool Updates

Bid Tab Analysis Search

Plans, Proposals, Addenda and As-builts

FDM 19-5-5.5.2 Other Tools and Resources

- Let plans and proposals October 2021 and earlier
 - Plans and Proposals FTP Site
- All addenda and let plans and proposals
 - HCCI Pages
 - Let plans and proposals after October 2021 are in HCCl Pages
- As-builts on DOTView GIS Application in Geoportal
 - WisDOT staff only

Contact Information

Rielly O'Donnell

- Proposal Management Chief DTSD-BPD
- Rielly.ODonnell@dot.wi.gov
- (608) 266-3721

Fred Schunke

- Design QA Engineer NCR
- fred.schunke@dot.wi.gov
- (715) 421-8079

Mark Maday / Jacobs Trey Horbinski / Jacobs

WisDOT Structural Engineers Symposium University of Wisconsin-Madison Union South Madison, WI May 23, 2024

Jacobs

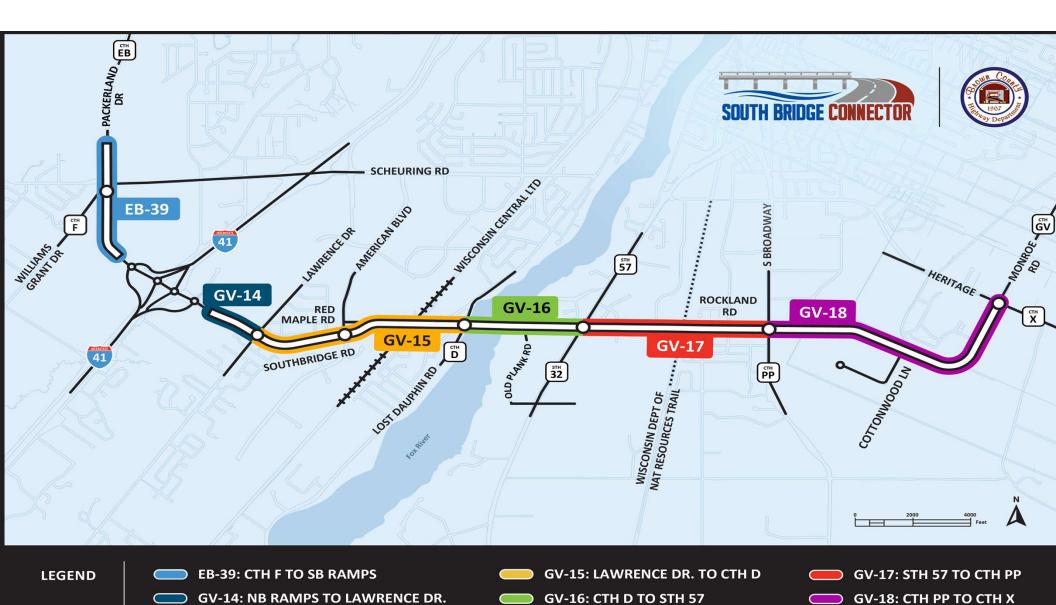
Presentation Outline

Project Overview

History / Project Status

Segment GV-16

Bridge Alternatives


Schedule

Infraworks Demo

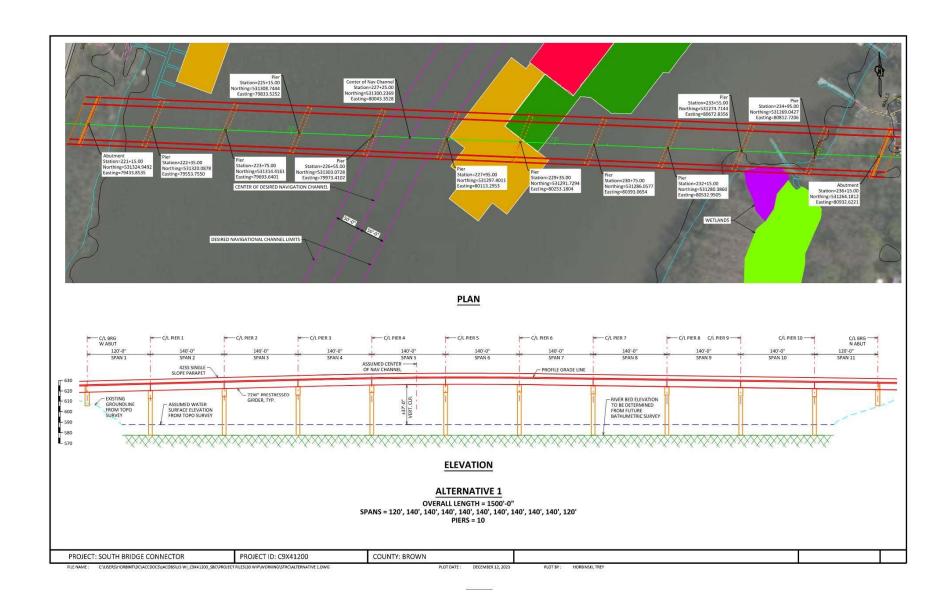
Jacobs

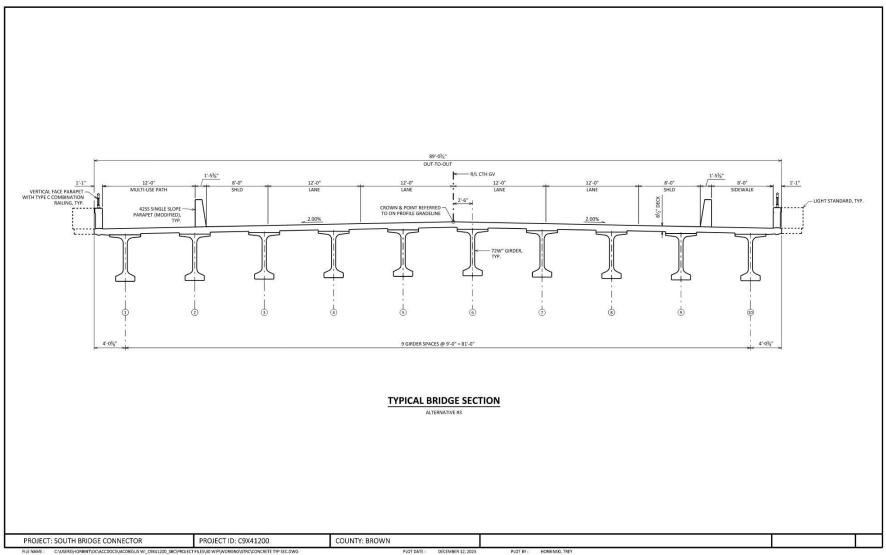
- Tier 1 EIS ROD Obtained October, 2020
 - https://www.browncountywi.gov/departments/planning-and-land-services/planning/south-bridge-connector/
 - WisDOT Committed Construction of the I-41 / CTH GV Interchange
- \$5M Federal Funding For Design / Construction, April 2022
- WisDOT Local Program Committed \$50M For Construction
 - Brown County and City of DePere Local Cost Share
- Brown County Project Website:
 - https://www.browncountywi.gov/departments/highway/general-information/south-bridge-connector/

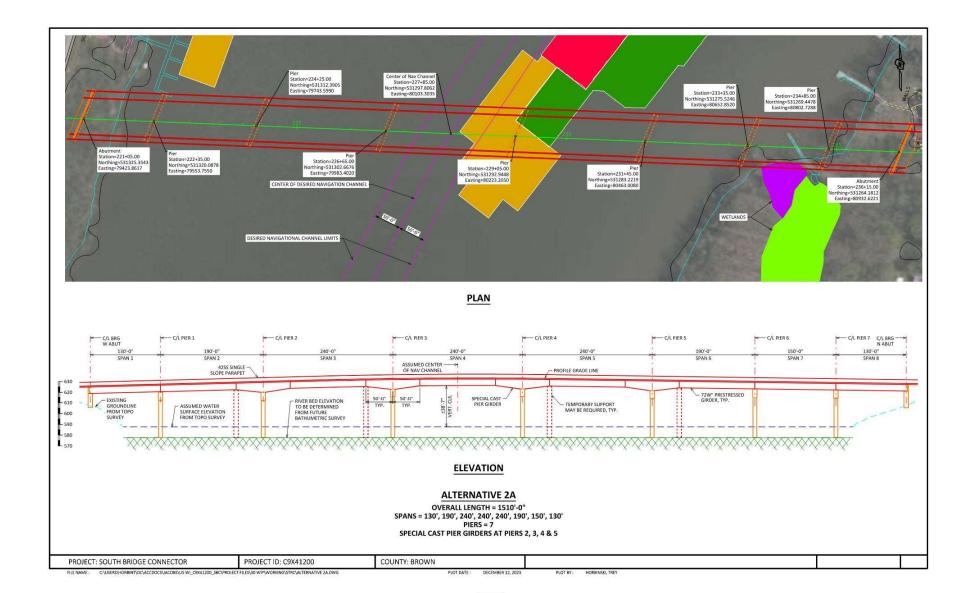
LEGEND

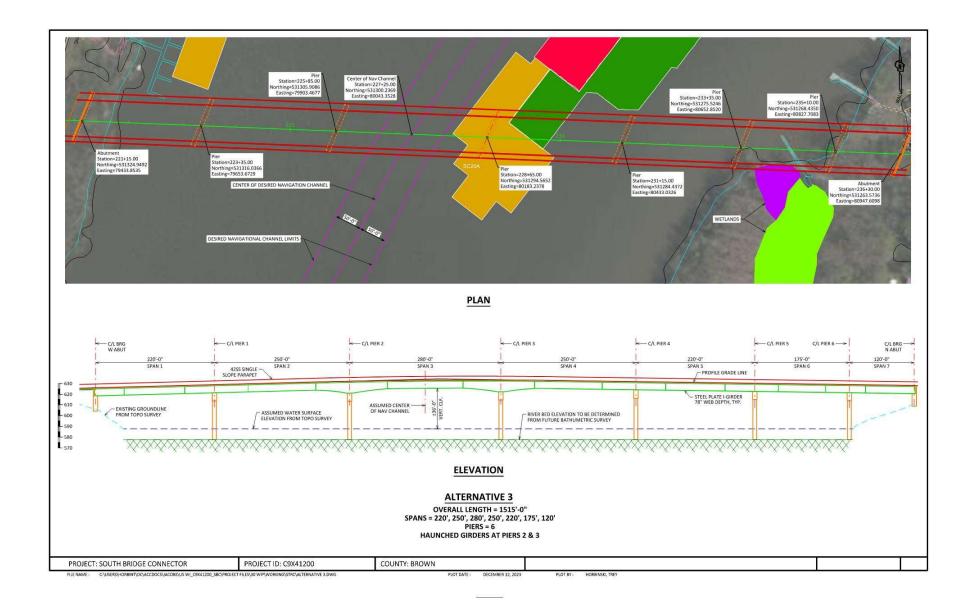
EB-39: CTH F TO SB RAMPS

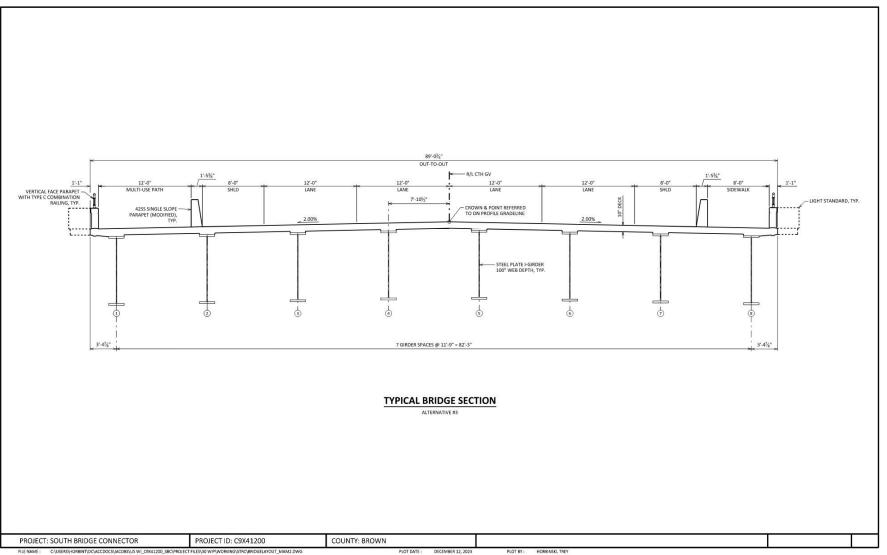
GV-14: NB RAMPS TO LAWRENCE DR.


OV-15: LAWRENCE DR. TO CTH D


GV-16: CTH D TO STH 57


GV-17: STH 57 TO CTH PP





Segment GV-16 Project Schedule:

Preliminary Engineering: 2024

• Final Design: 2025 - 2026

• Construction: 2027 - 2028

Jacobs

Autodesk Infraworks
Conceptual Infrastructure Modeling

Presentation Roadmap

Software Overview

Site Modeling

Bridge Modeling

Model Enhancements

Sharing the Model

Live Demo

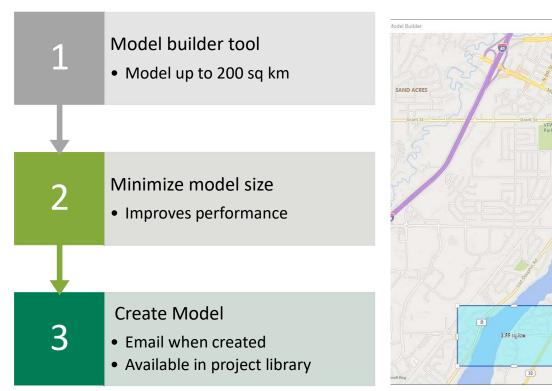
Software Overview

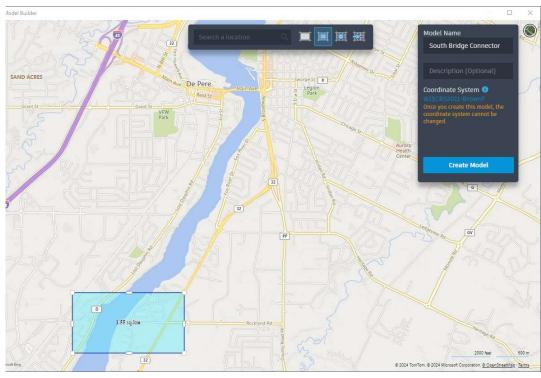
3D Civil Infrastructure

• Conceptual design of roads, structures, drainage

Purchase Options

- Standalone subscription
- Bundled part of Autodesk AEC bundle

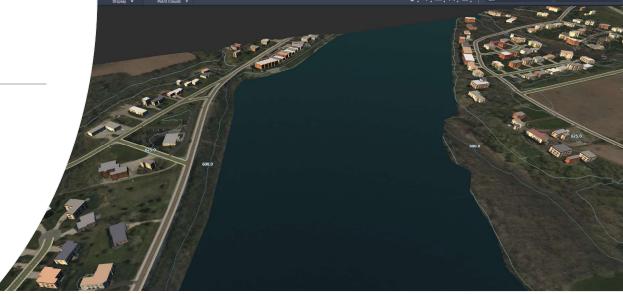

Seamless integration with other Autodesk products


- Civil 3D
- Revit

Usable "Out-of-the-box"

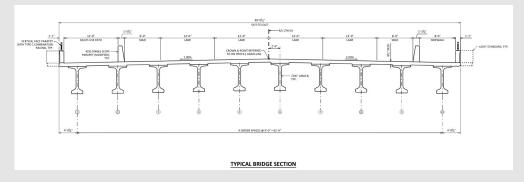
• Common road and bridge elements preloaded

Creating an Existing Site Model

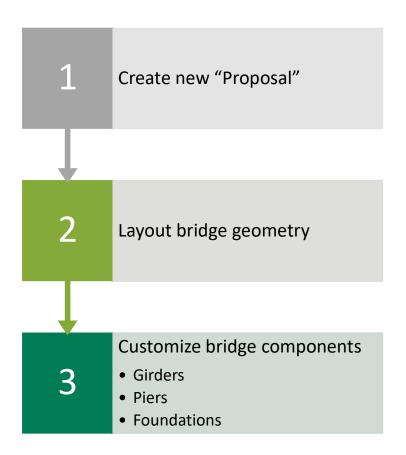


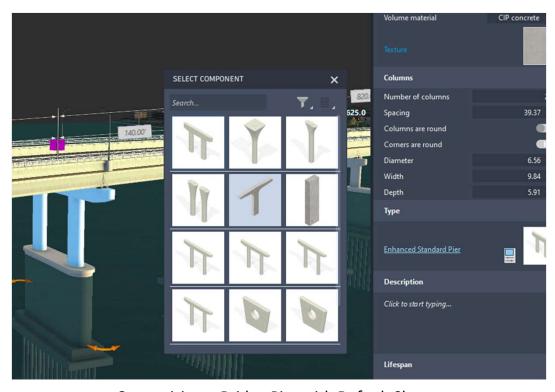
Infraworks Model Builder Tool

Model Builder Result


Create Bridge alignment and profile in C3D

Import Alignment and profile into Infraworks


Model Typical section as road



Infraworks Typical Roadway Section

Model the Bridge

Customizing a Bridge Pier with Default Shapes

Model Enhancements

*with Autodesk 3DS Max

Screenshots

Drive-thru Videos

Interactive Presentation

Export as 3D Model

Infraworks Demo

Geotechnical Engineering Update

David Staab, PE Geotechnical Engineering Unit Supervisor

Structural Engineers Symposium UW Madison – Union South

May 23, 2024

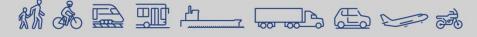
Geotechnical Engineering Unit – Staff Updates

Bob Arndorfer (Retired June 2022)

Jeff Horsfall (Retired April 2023)

Paulo Florio, Geotech. Eng.

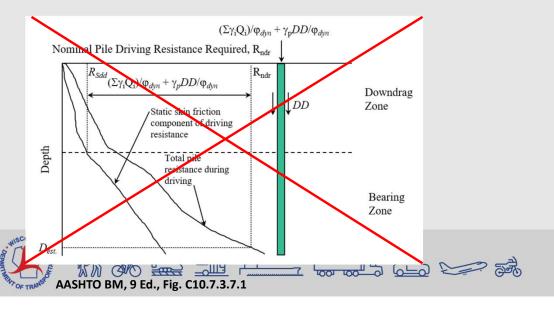
Crystal Goffard

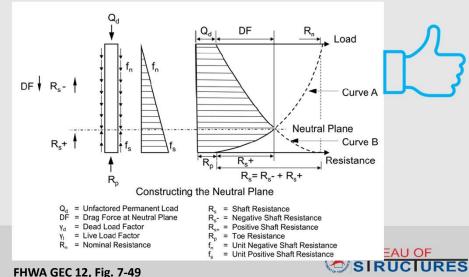

Crystal Goffard, Geotech. Eng.

Tri Tran, Geotech. Eng.

Dan Reid

Dan Reid, Geologist (Retiring February 2025)



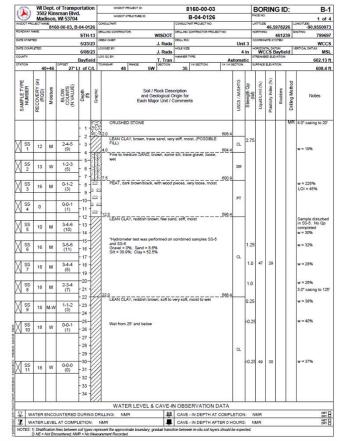


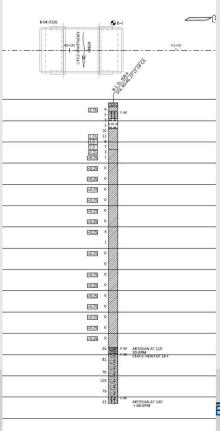
Downdrag Update

- AASHTO Bridge Manual updates to replace "Explicit Method" (3.11.8 and 10.7.1.6.2) with Neutral Plane Method.
- AASHTO Bridge Manual updates expected later in 2024

Downdrag Update

- WisDOT Bridge Manual updates to follow AASHTO BM updates.
- Neutral Plane Method has/can be used on WisDOT projects now.
- FHWA GEC 12, Section 7.3.6
- Contact BOS/BTS for assistance.

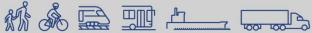




gINT boring log

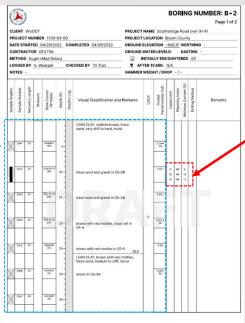
gINT sunsetting in 2026

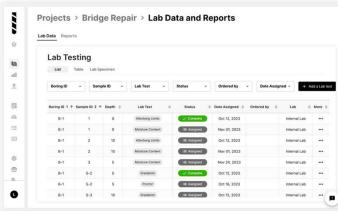
gINT fence log



gINT replacement

- 4 programs evaluated
- BoreDM selected




BoreDM for WisDOT

Field data collection

Boring log development (gINT replacement)

Geotechnical lab data

Source: BoreDM

BoreDM for WisDOT

- Centralized storage for all geotechnical information
- Import existing WisDOT gINT files
- Import existing WisDOT PDF logs
- Reduce manual data entry/re-entry points (human error)
- Updated soil boring log heading and format

BoreDM for WisDOT

Designers may appreciate

- DXF export for CAD software (fence diagrams)
- Civil 3D API Connection (in development)

- Geo-Institute (ASCE) DiGGS
- DiGGS for geodata is analogous to HTML for transmitting website data
- gINT replacement programs working towards DiGGS compatibility

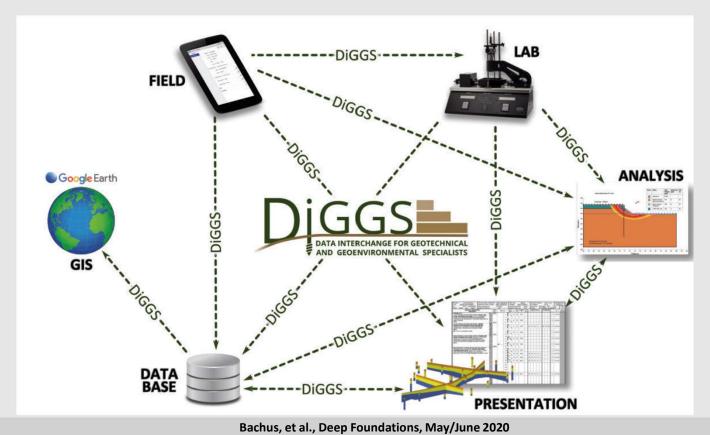
Standard Practice for

Digital Interchange of Geotechnical Data

AASHTO Designation: PP 102-20 (2022)¹

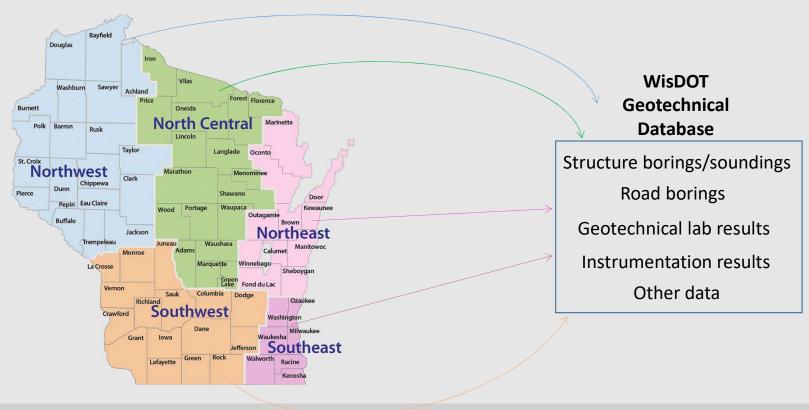
First Published: 2020 Reviewed but Not Updated: 2022

Technical Subcommittee: 1b, Geotechnical Exploration,

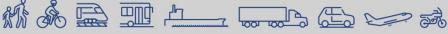

Instrumentation, Stabilization, and Field Testing

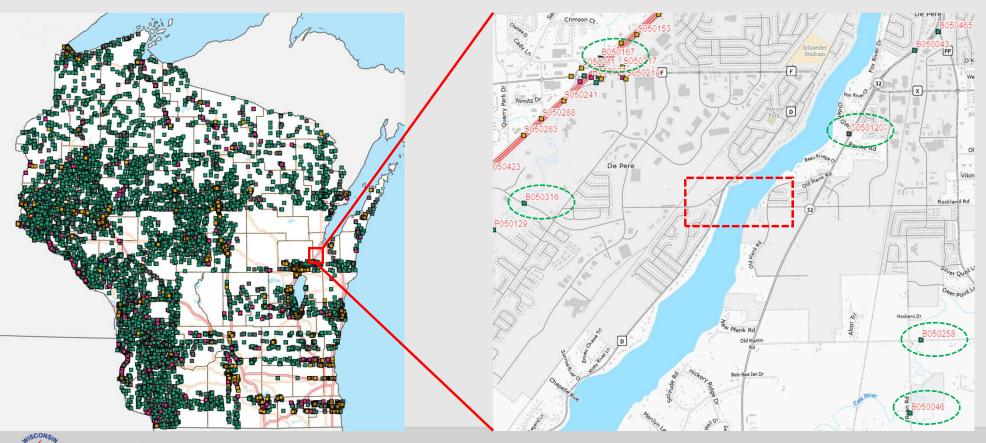
4.2. Complete records of all data identified to be recorded and reported by geotechnical standard test procedures, or as specified by the Agency and conducted by the Agency or on the Agency's behalf by contracted geotechnical service providers, shall be transferred to the Agency and by the Agency in a format consistent with the DIGGS schema.

WisDOT Geotechnical Data Management


- Data vs. Information
- WisDOT data will be stored and transferred using DiGGS.
- WisDOT consultant geotechnical data?
 - Expect DiGGS requirements
 - Timeframe TBD
 - Coordination, communication & education

WisDOT Geotechnical Data Management





Questions?

David Staab, PE david.staab@dot.wi.gov 608-246-7952

COASULTANT EVIEW

Najoua Ksontini, P.E.
Consultant Review and Hydraulics Supervisor

2024 WisDOT Structural Engineers Symposium

Consultant Review

Supervisor

Najoua Ksontini

Preliminary Review

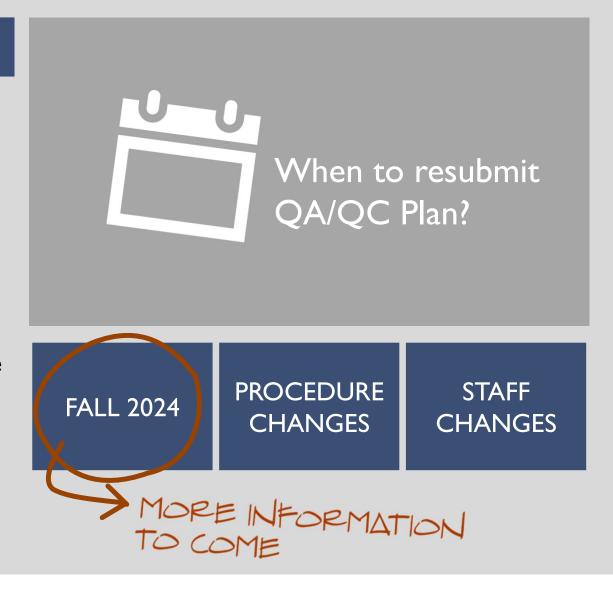
Ruth Coisman

Final Review

Steve Revello Emily Kuehne Max Kulick

Records Coordinator

Sarah Wright


Quality Assurance/Quality Control

QA/QC

All consultant firms providing structural design services to the Department must have a QA/QC plan on file with BOS.

The QA/QC plan should be specific to the consultant firm and should document procedures that the firm utilizes to ensure plan quality.

Refer to WisDOT BM 6.5 for items to be included in the QA/QC plan.

Preliminary Plan

HYDROLOGY REPORT

E-submit 60 days prior to preliminary plan submittal [WisDOT BM Chapter 6.5]

NON-STANDARD DESIGNS

contact Ruth ahead of submittal

- not following abutment tables
 high skew
- 3-sided structures
- <0.5% grade [state system]shallow foundations

- open railing [state system]
- lack of freeboard
 high level aesthetics
 - doing something weird

PRIORITIZING

let Najoua know ahead of time, but we can't accommodate everyone's schedule

DNR INITIAL CONCURRENCE LETTER

include with preliminary plan submittal

SIZING REPORT

include scour calculations [WisDOT BM Chapter 8 Appendix A]

Final Plan

REVIEW

ON-TIME SUBMITTAL IMPROVEMENT FORM

when final plans submitted <2 months prior to PS&E

GEOTECH REPORT

include with final plan submittal, make sure it is latest and greatest

PRELIMINARY PLAN

include responses to preliminary plan comments

RATING SPREADSHEET

no longer required

LOAD RATING SUMMARY FORM

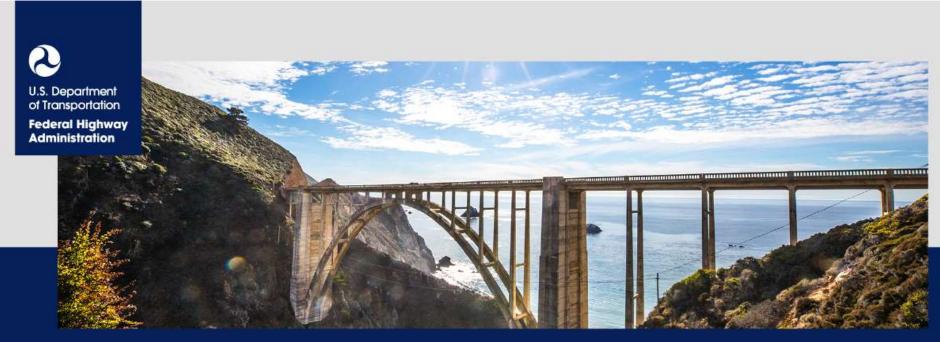
complete FAST Act Emergency Vehicles when:

[WisDOT BM Chapter 45]

HL-93 INVENTORY < 0.9

HS-20 INVENTORY < 20

UPDATES


■ Final Consultant Performance Evaluation Report ★★☆
BOS no longer completing

REMINDERS

- don't count on BOS to be your QA/QC
 include plan initials for both preliminary and final plans
- preliminary plan review status contact Ruth and Najoua, not consultant reviewers
- Removing Structure bid items [WisDOT BM 6.3.3.8]

Thank You!

Questions?

FHWA Updates

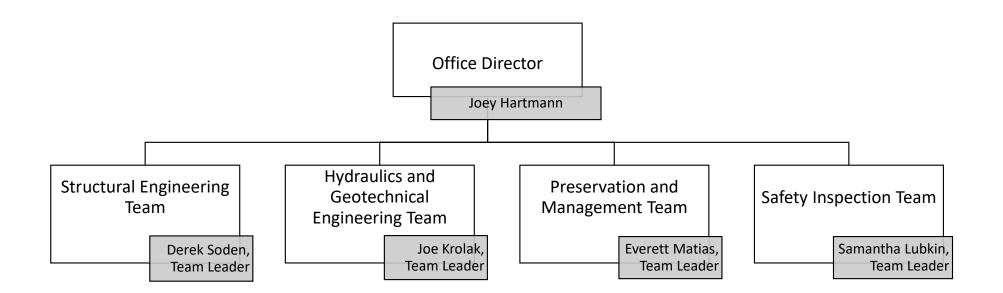
WisDOT Structural Engineers Symposium Derek Soden, Principal Structural Engineer May 23, 2024

Disclaimer

Except for the statutes and regulations cited, the contents of this presentation do not have the force and effect of law and are not meant to bind the States or the public in any way. This presentation is intended only to provide information regarding existing requirements under the law or agency policies.

Unless otherwise noted, FHWA is the source for all images in this presentation.

Agenda


- FHWA Structural Engineering Organization
- Bridge and Tunnel Safety and Funding Programs
- Recent Bridge Issues
 - Fern Hollow Bridge, NTSB Final Report

Structural Engineering in the FHWA U.S. Department of Transportation Organization **Federal Highway** Administrator * **Administration** ITS Joint Directors of Field Program Office ** for Research and Services* Technology Office of Office of Office of Office of Office of Office of the Office of Office of Office of Office of Innovation and Office of Office of Safety Policy and **Federall ands** Research Planning, ChiefFinancial Operations Chief Counsel Civil Rights Administration Infrastructure Workforce Governmental Highway Public Affairs Environment, and Development, and Officer Solutions Affairs Technology Realty Office of Media Infrastructure Office of Financial Office of Officeof **National Highway** Office of Office of Research and Office of Freight Integrity & Stewardship, Office of Human Planning Affairs and Policy Safety Programs **Budget and** Management Management Oversight, and Resources Finance Institute Development and Operations Management Office of **Federal** Resource Office of Office of Safety Office of Office of Office of Office of Safety and Operations Bridges and Transportation Transportation and Grants Management Policy Studies Management Researchand Lands Center Environment Management Services **Structures** Federal-Aid Office of Corporate Office of Office of Office of Tribal Research, Technology Office of Highway Preconstruction Information Transportation Natural Transportation Division and Innovation Policy Information Construction, and Technology and Operations Management **Data Services** Offices Office of Project Federal Lands Office of Office of Resource Developmentand Highway Division Internationa Offices (Field) Management Programs Office of Real Estate Source: FHWA

Bridge and Tunnel Safety and Funding Programs

- National Bridge Inspection Standards 2022 Final Rulemaking
- Bridge Formula Program
- Bridge Investment Program

- Published in the Federal Register May 6, 2022 (87 FR 27396)
- Became effective June 6, 2022
 - Load rating provisions effective as of that date
- Incorporation of the Specifications for the National Bridge Inventory (SNBI)
 - Replaces the 1995 "Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges"
 - Full implementation by 2028¹

¹ See FHWA's May 25, 2022 Memorandum "<u>Implementation of the Specifications for the National Bridge Inventory</u>" for more information

BFP: Bridge Formula Program

Purpose	Bridge replacement, rehabilitation, preservation, protection, and construction
Funding	\$27.5 B (FY 22-26), apportioned to the States, \$5.5 B per Fiscal Year
Eligible projects	 Highway bridge projects on public roads including: Replacement, Rehabilitation, Preservation, Protection, or Construction BFP funding may be used on: Any highway bridge that is listed in the National Bridge Inventory (NBI), or Any new highway bridge that upon the completion of construction would meet the definition of a highway bridge and would be required to be reported to the NBI
Ineligible Projects	 NBIS bridge inspections Load rating and posting of bridges Non-highway bridge projects
Other Key Provisions	• 100 percent Federal share for costs reimbursed with BFP funds under this program for an off-system highway bridge owned by a county, town, township, city, municipality or other local agency, or federally-recognized Tribe

See FHWA's Jan. 14, 2022, <u>BFP Implementation Guidance</u> for additional information.

Purpose	Improve bridge (and culvert) condition, safety, efficiency, and reliability
Funding	 \$12.5 B (FY 22-26), including— \$3.3 B (FY 22-26) in Contract Authority from the Highway Trust Fund (HTF); and \$9.2 B (FY 22-26) in advance appropriations from the General Fund (GF)
Eligible entities	 State, MPO (w/ pop. >200K), Local government, Special purpose district/public authority with a transportation function, Federal land management agency, or Tribal government
Eligible projects	 Project to replace, rehabilitate, preserve or protect one or more bridges on the NBI Project to replace or rehabilitate culverts to improve flood control and improve habitat connectivity for aquatic species
Other key provisions	 Large Bridge Projects (>\$100M) are eligible for up to 50% of project costs and have the option for multi-year funding agreements Bridge Projects (≤\$100M) are eligible for up to 80% of project costs Sets aside of \$20M per FY for Planning grants Sets aside of \$40M per FY for Tribal transportation bridges

FY 2022 Bridge Investment Program

Large Bridge Projects

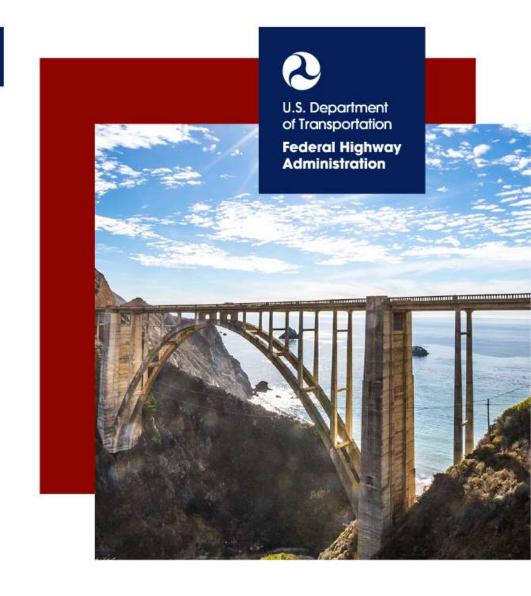
- \$2.1 billion
- 4 Projects in 5 States
 - Brent Spence Bridge (KY, OH)
 - Golden Gate Bridge (CA)
 - Gold Star Mem. Bridge (CT)
 - Calumet River Bridges (IL)

Bridge Projects

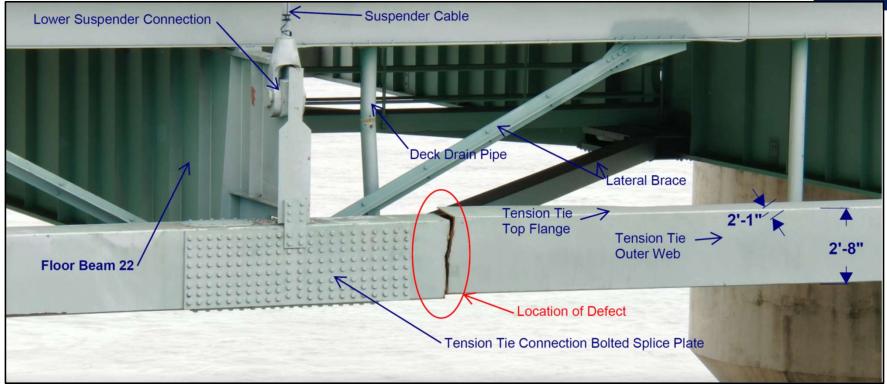
- \$296 million
- 9 Projects in 9 States

Planning Grants

- \$20 million (statutory set-aside)
- 24 Projects in 24 States, including:
 - Interstate Replacement Bridge (OR)
 - Cape Cod Bridges (MA)
 - East River Bridges (NY)



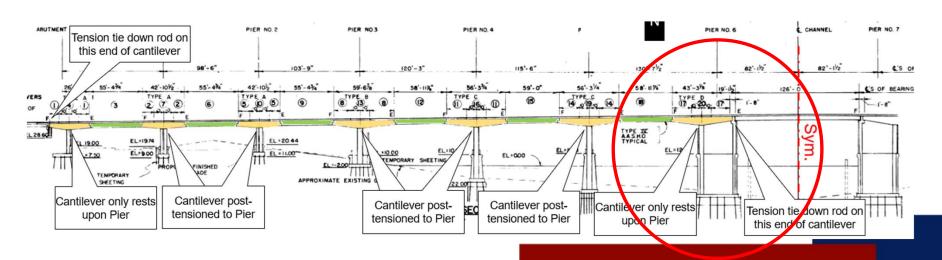
- Application Intake and Eligibility Review Large Bridge Projects
 - Applications submitted before the applicable application deadline will be considered for the current review cycle
 - November 27, 2023, for FY23/24 Funding Cycle
 - August 1, 2024, for FY25 Funding Cycle
 - August 1, 2025, for FY 26 Funding Cycle
- Application Intake and Eligibility Review Bridge Projects
 - Applications submitted before the applicable application deadline will be considered for the current review cycle
 - March 19, 2024, for FY23/24 Funding Cycle
 - November 1, 2024, for FY25 Funding Cycle
 - November 1, 2025, for FY 26 Funding Cycle


Recent Bridge Issues

- Hernando DeSoto Bridge (2021)
- Fern Hollow Bridge (2022)
- Washington Bridge (2023)
- Francis Scott Key Bridge (2024)

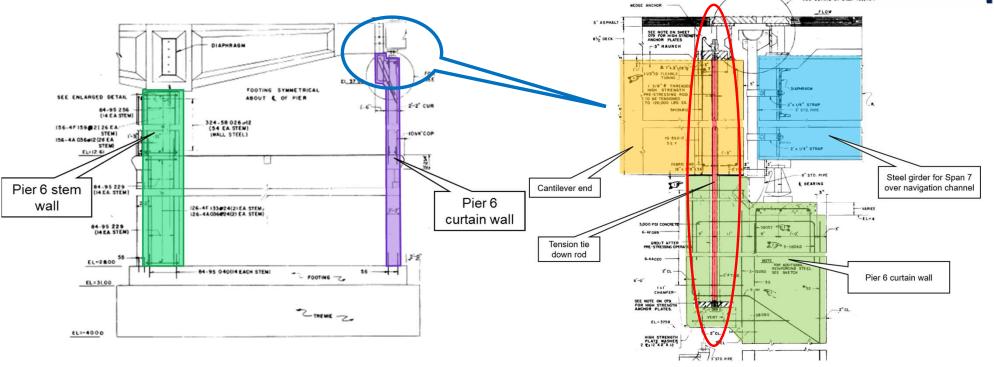
Hernando de Soto Bridge – Tie Girder Fracture (2021)

Source: Michael Baker International



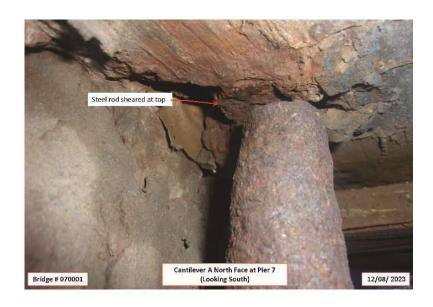
- Non-Destructive Testing of Fracture Critical Members Fabricated from AASHTO M244
 Grade 100 (ASTM A514/A517) Steel
- Requires that State DOTs:
 - Identify bridges with fracture critical members fabricated from T-1 steel without requirements to meet the provisions of the AASHTO/AWS FCP and document them in the FCM inspection procedures¹
 - Supplement hands-on inspection of T-1 FCMs with Non-Destructive Evaluation verifying the soundness of butt welds in tension²
 - Unless previous verification has been documented
 - Previous verification needs have been performed a minimum of 48 hours after original welding (≤ 2" thick, 72 hours for > 2" thick)
 - · Complete testing by March 31, 2024
 - Classify rejectable indications (using AASHTO/AWS criteria) as critical findings³
 - By March 31, 2022, Report an inventory of bridges with T-1 FCMs and actions taken to perform verification and follow up on findings⁴
 - Update reporting data at six-month intervals

Washington Bridge Closure (2023)



- Carries I-195 over the Seekonk River in Providence, Rhode Island
- Emergency closure, December 2023
- Bridge Details
 - 13 spans, 1,904' total length
 - Prestressed concrete cantilever and drop-in spans, with one steel span

Washington Bridge Details



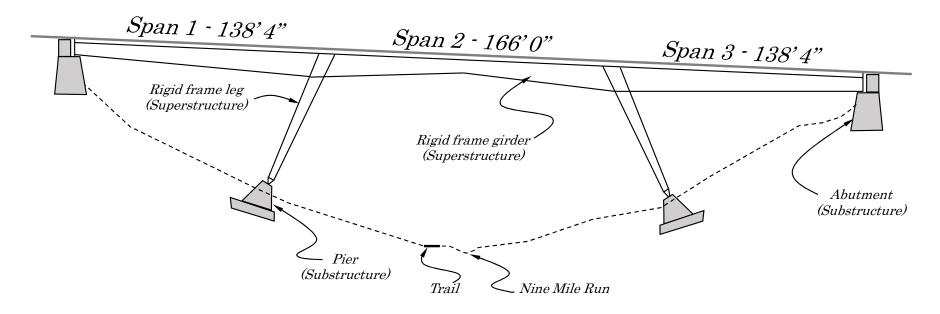
Tie Rod Conditions, December 2023

- January 28, 2022
- Pittsburgh, Pennsylvania
 - Forbes Avenue over Nine Mile Run in Frick Park
- 6 injuries (2 serious)
- 3-span rigid (K) frame 442'-8" in length
 - Constructed 1972-1973
- Fracture Critical (NSTM) Bridge
- Poor Condition (annual inspections)
- Posted at 26 tons

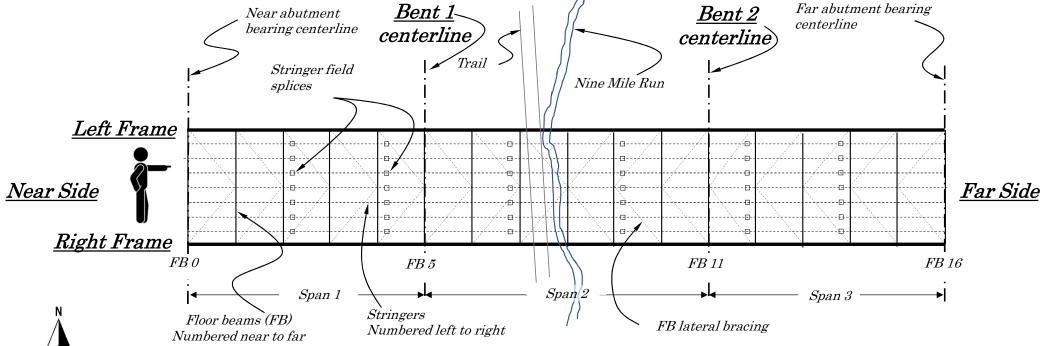
NTSB Report and Docket

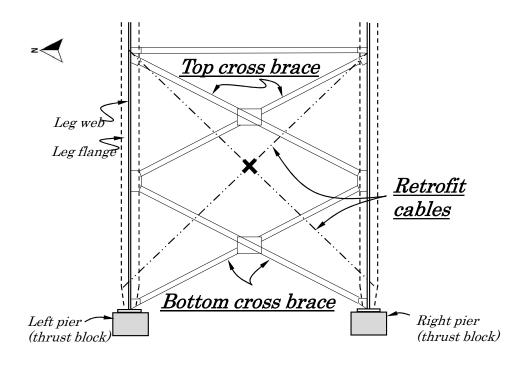
The main accident page and link to final report is at:

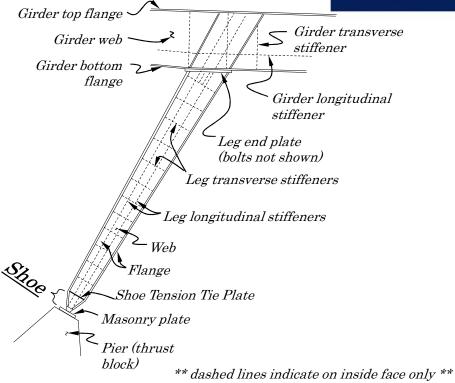
https://www.ntsb.gov/investigations/Pages/HWY22MH003.aspx

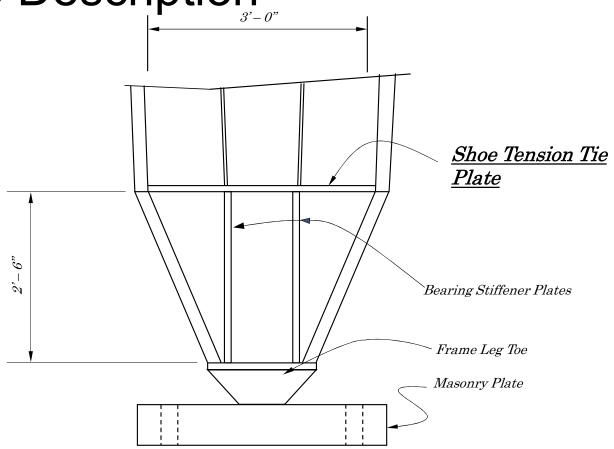

The docket is at:

https://data.ntsb.gov/Docket/?NTSBNumber=HWY22MH003

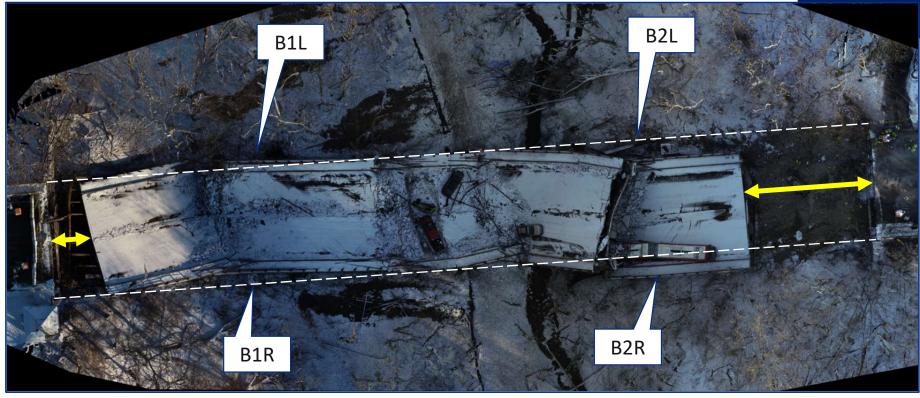

- "Forbes Avenue over Fern Hollow Bridge Collapse Investigation – Assessment of Bridge Inspection and Load Rating"
- "Materials Laboratory Factual Report 23-036," Appendix A and Appendix B





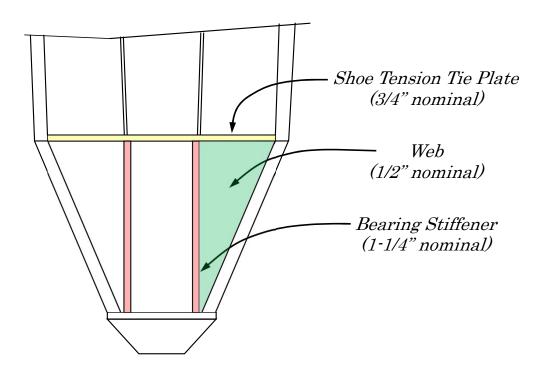


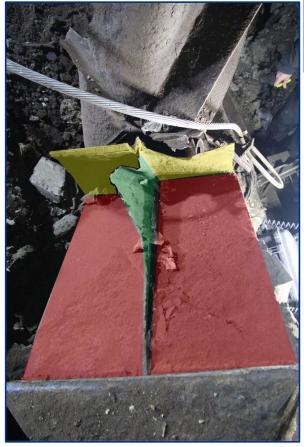
U.S. Department of Transportation
Federal Highway


Administration

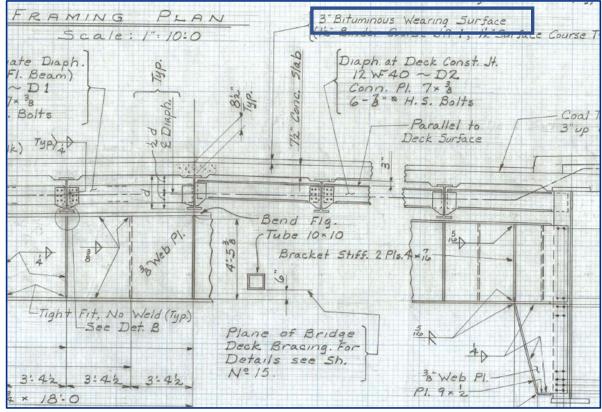
Source: NTSB

Leg B1R


~20 ft of downhill flange was missing, wasn't recovered until rest of super was removed



All images source: NTSB


Leg B1R

Wearing Surface

Source: City of Pittsburgh

Wearing Surface

Remaining Section Measurements

Thickness

Remaining

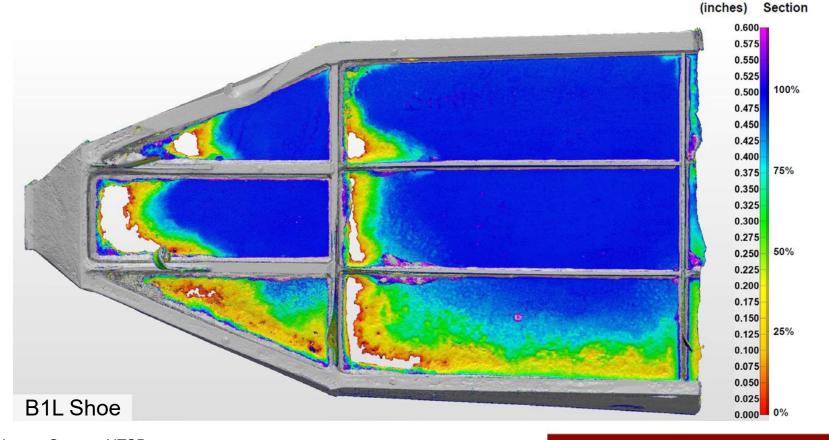
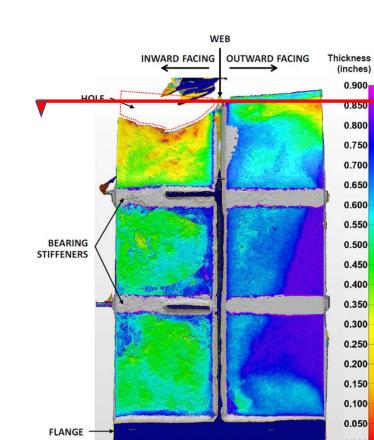


Image Source: NTSB

Remaining Section Measurements

WEB


B1R Tension Tie Plate

OUTWARD

FACING

INWARD

FACING

 $2.2in^2$ remaining effective area in the tie plate

Remaining

Section

100%

75%

50%

25%

0.900

0.850

0.800

0.750

0.700

0.650 0.600

0.550

0.500

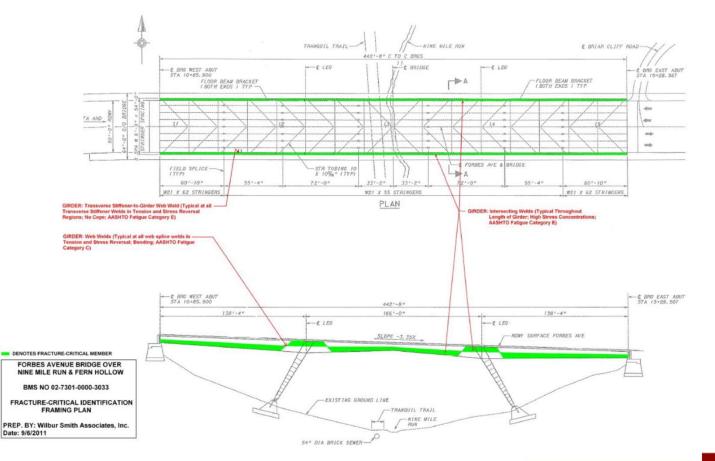
0.450 0.400

0.350 0.300 0.250 0.200

0.150 0.100 0.050

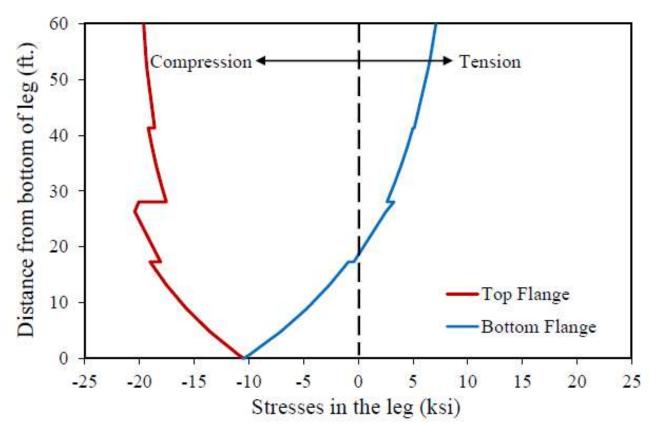
0.000 0%

Images Source: NTSB



- Reviewed all inspection reports going back to 2005.
- Assessed inspection procedures and quality. Significant findings included issues related to:
 - Fracture Critical Member (FCM) inspection procedures,
 - Section loss measurements and documentation, and
 - Condition assessment.
- Assessed inspector recommendations. Significant findings included issues related to:
 - · Load re-rating, and
 - Maintenance prioritization.

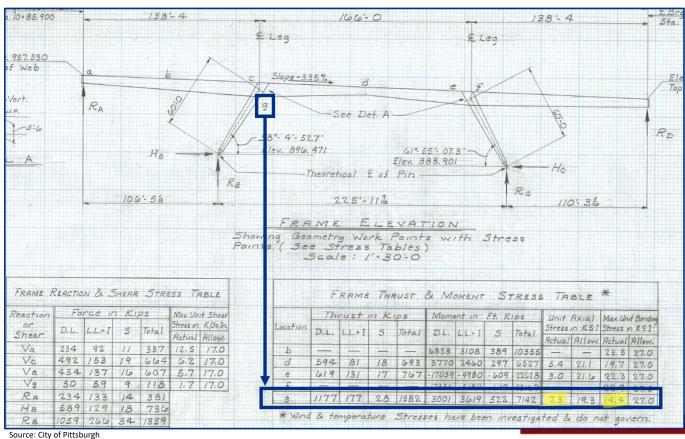
FCM Inspection Procedures- Identification


Girders
 highlighted to
 indicate zones
 of tension.

 No portion of the legs are highlighted.

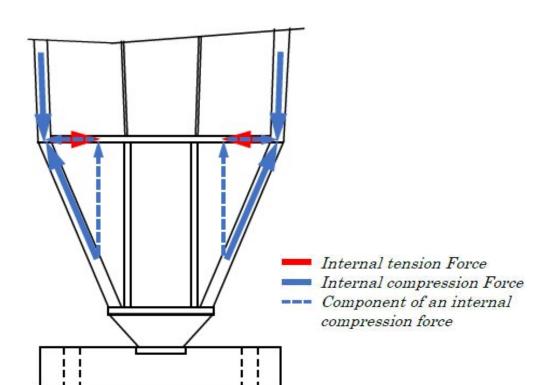
Sources: PennDOT and City of Pittsburgh

U.S. Department of Transportation Federal Highway Administration


FCM Inspection Procedures- Identification

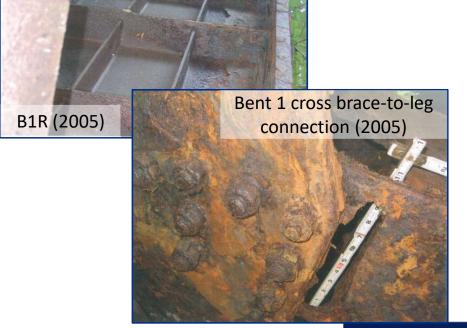
- FHWA independent analysis.
- Analysis shows the upper ²/₃ of the leg is partially in tension.

FCM Inspection Procedures- Identification



Design plans show 14.4 ksi bending stress exceeds 7.3 ksi axial stress at top of leg. This implies tension.

FCM Inspection Procedures- Identification



- Change in flange angle results in balancing tension force.
- The base of the leg is globally in compression, but the tie plate element is in axial tension.

Section Loss - History

- As far back as 2005, the leg stiffeners/webs, and cross braces had documented section loss including areas of 100% section loss.
- Cross brace connections deteriorated rapidly from 2005-2021, including the failure of the connections for Bent 1 bottom brace in 2018.

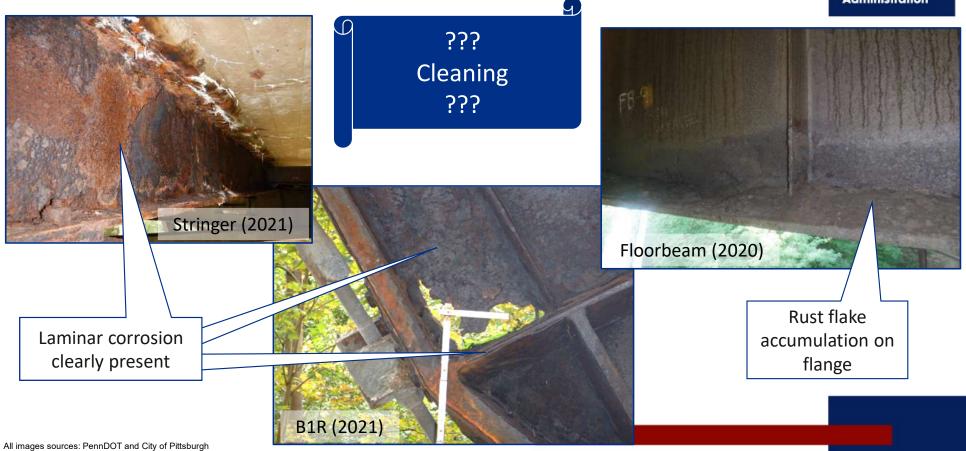
- Documentation focused on the growing areas of 100% section loss.
- No indication that cleaning of the steel had been performed based on photos.
- No reviewed report included measurement of tie plate section loss.
- Unclear whether all areas of section loss were accessed and measured on the legs.
- Loss, when reported, was primarily estimate of depth or percent.

Section Loss- Measurement and Documentation

AASHTO MBE Article 4.8.1.2- Cleaning.

"Metal structures with heavy plate corrosion will require chipping with a hammer or other means to remove corrosion down to the base metal in order to measure the remaining section."

AASHTO MBE Article 4.8.3.1- Steel Beams, Girders, and Box Sections.

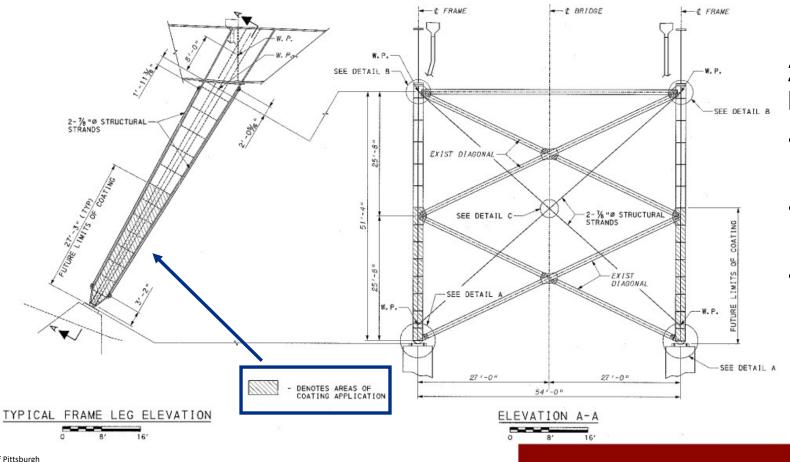

"Structural steel members should be inspected for loss of section due to corrosion. Where a build-up of rust scale is present, a visual observation is usually not sufficient to evaluate section loss. Hand scrape areas of rust scale to base metal and measure the remaining section using calipers, ultrasonic thickness meters, or other appropriate method. Sufficient measurements should be taken to allow the evaluation of the effect of the losses on member capacity...

Inspect uncoated weathering steel structures for details or conditions that promote continuous wetting of uncoated steel; bridge geometrics that result in salt spray reaching the uncoated steel; pitting of the surface of the steel indicating unacceptable degradation of the steel."

AASHTO Manual for Bridge Evaluation, 3rd Edition [23 CFR 650.317(a)]

Section Loss- Measurement and Documentation

Section Loss- Measurement and Documentation



Web hole above B1R tie plate, 2013 vs 2021

All images sources: PennDOT and City of Pittsburgh

Maintenance and Rehabilitation History

2009 Rehabilitation

- Install cable braces.
- Install PVC downspouts.
- Zone paint legs.

Source: City of Pittsburgh

Maintenance and Rehabilitation

- Lower cross brace was removed in December 2018/January 2019.
- Load rating analysis assumptions indicated that the rating assumed full loss of cross braces.

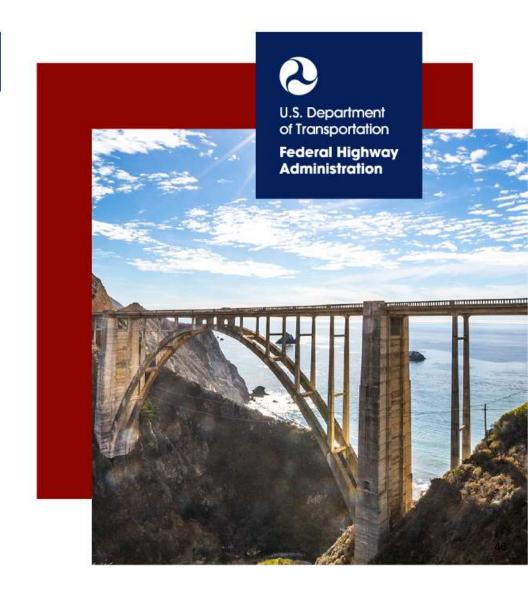
Comments/Assumptions*: Ratings assume full loss of the original column cross frames and 1/16" loss in the stringer flange as well as to the near half

Sources: PennDOT and City of Pittsburgh

- PennDOT includes maintenance recommendations in inspection reports.
- Inspectors recommend maintenance actions and assign a priority to them based on PennDOT Publication 100A.

		Short Definition	Action Timeframe				
0	CRITICAL	Immediate response required	(within 7 days)				
1	HIGH PRIORITY	As soon as work can be scheduled					
2	PRIORITY	Review work plan and re-prioritize schedule	(routine inspection interval)				
3	SCHEDULE	Add to scheduled work	(Add to schedule)				
4	PROGRAM	Add to programmed work	(when funds are available)				
5	ROUTINE	As per existing maintenance schedule	(within the next work cycle)				
No	tes:						
	1) The District Bridge Engineer (and owner for non-PennDOT bridges) must be advised of						
	conditions that warrant a Priority code 0 or 1 Flexaction work candidate, and must accept this						
	coding before Ite	coding before Item 1A07, Inspection Status, is changed to Approved. See Publication 238 Sections					
	2.13 and 2.14 for	specific guidance and required actions for Price	ority Codes 0 and 1.				

Source: PennDOT Publication 100A


Fern Hollow Bridge Maintenance Recommendations

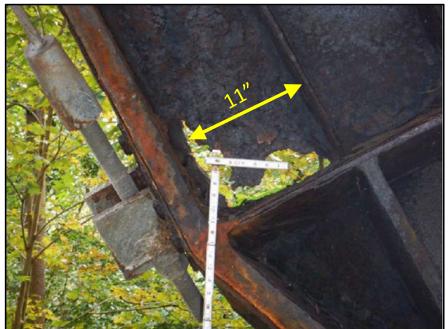
Recommended Maintenance Item Description	Priority	First Year Identified	Additional Years Identified	Documented Completion
Repair/replace stiffeners and web on frame legs	2	2007	2009-2021	
Repair cross bracing on both frame legs	2	2005	2007-2021	
Re-tension cables on legs	2	2009	2011-2014	7/25/2014
Extend PVC "weepholes" in deck to drain below superstructure	2	2005	2007-2021	
Paint superstructure areas exposed to leakage, primarily the frame legs ^a	2	2007	2014-2021	
Drill crack arrest holes in FB/girder connection plate cracks	2	2015	2016-2021	
Clean and flush deck scuppers (drains) ^b	2	2017	2018-2021	
Repair/replace lower cross frame at Bent 1 which is nearly severed at connections.	1	2017	3/2018	1/4/2019 cross frame was removed
Remove or replace defective light pole on deck.	0	2009		By 2011 inspection, all light poles were replaced.
Repair/replace lower cross frame at Bent 1 which has become severed. (priority raised to 0)	0	9/2018		1/4/2019 cross frame was removed
Add "bridge" placards to all postings	0	2015		Before 2016 inspection
Add "distance ahead" placards to all postings	0	2020		9/11/2020

Load Rating Investigations

- Review of historical load rating records
- Evaluation of load rating analyses
- Independent FHWA analyses

- June 2000 Evaluated floor beams and stringers
 - Did not evaluate rigid frame girders or legs
 - AASHTO H-20 and HS-20 and PennDOT ML80 live loads
- September 2003 Supplemental live load analysis
 - PennDOT TK527 live load
- October 2013 Most recent load rating
 - Evaluated floor beams, stringers and rigid frame girders and legs
 - Based on inspection recommendation to: perform an analysis of the stability of the structure assuming that the cross braces are nonfunctional

- Load Factor Rating (LFR) method
- Considered section losses noted in inspection reports
 - Equivalent sections (i.e., "smeared" losses)
- Excluded the contribution of the leg cross braces
 - Weak axis unbraced length = full height of leg
- Included weight of 3" wearing surface

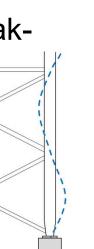

Equivalent Section Loss

- Based on worst-case observation, an 11" wide hole
- Applied as a generalized 11" wide void along entire plate length
- Based on average plate width of 3'-0", section thickness was reduced proportionately:

$$\frac{0.5"}{36"} = \frac{t_{eff}}{36" - 11"} \to t_{eff} = \frac{25"}{36"}(0.5") = 0.347"$$

- Flange losses similarly modeled
- Appropriate for global analyses, not for consideration of local effects

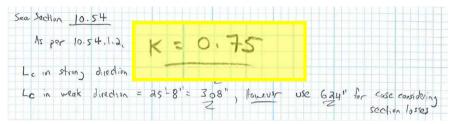
Sources: PennDOT and City of Pittsburgh


Effective Length Factor

• Euler Buckling Load:
$$P_{cr} = \frac{\pi^2 EI}{(kL)^2}$$

 As designed, assumed, buckled shape in the weak-

axis direction: ----



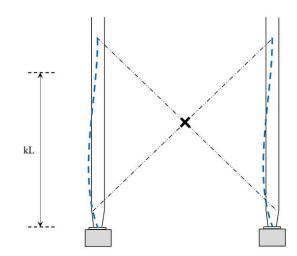
Sources: PennDOT and City of Pittsburgh

Effective Length Factor

From the Load Rating calculations

Sources: PennDOT and City of Pittsburgh

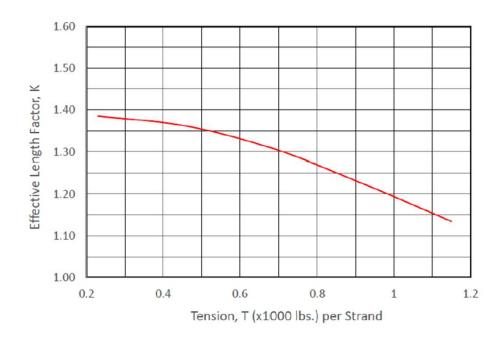
 From AASHTO Standard Specifications for Highway Bridges*


10.54.1.2 Effective Length

The effective length factor K shall be determined as follows

- (a) For members having lateral support in both directions at its ends
- K = 0.75 fc riveted, bolted, or welded end connec-
- K = 0.875 for pinned ends.

- (b) For members having ends not fully supported laterally by diagonal bracing or an attachment to an adjacent structure, the effective length factor shall be determined by a rational procedure.**
- * AASHTO Manual for Bridge Evaluation, 3rd Edition, Article 6B.1.1 [23 CFR 650.317(a)]


 Assumes translation- and rotational restraint that the cable bracing could not provide:

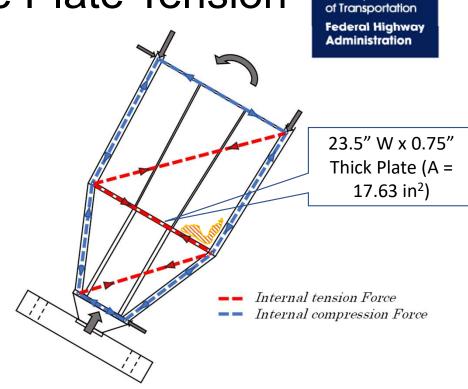
• Relationship between cable tension and k factor:

Summary of Leg Ratings (Sectional Analysis)

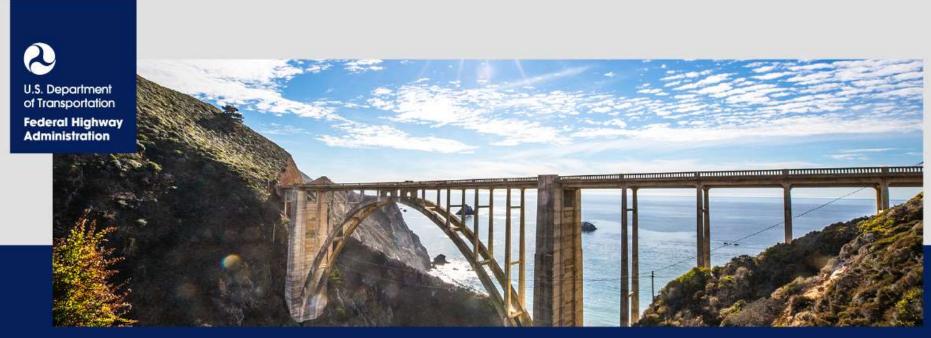
Scenario	HS-20 Operating Rating Factor (per MBE LFR)	HS-20 Operating Rating (tons) (per MBE LFR)
As-Designed Assumes both cross braces effective between legs (k=1.0) and 3-inch wearing surface	2.89 ²	104
Modified As-Designed Assumes both cross braces effective between legs ($k=1.0$) and 5.6-inch wearing surface	2.62 ²	94
2014 Load Rating Assumes cross braces ineffective, cable braces effective (<i>k</i> =0.75), 3-inch wearing surface, section loss distributed evenly across frame leg.	0.92	33 ³
Existing Condition at Collapse 1 Assumes cross braces ineffective, cable braces tightened to approximately 1000 lbf tension (k =1.2), 5.6-inch wearing surface and section loss distributed evenly across frame leg.	0.17	6
Existing Condition at Collapse 2 Assumes cross bracing ineffective, cable braces tightened to approximately 200 lbf tension (k =1.4), 5.6-inch wearing surface and section loss distributed evenly across frame leg.	-0.66 ⁶	N/A

Local Effects – Flange Buckling

- Analysis to determine unbraced length of the flange plate that results in plate buckling controlling over global buckling.
- f_{cr} for global buckling of the leg, using the upper bound value of k was 11.5ksi
- For flange buckling to control, l_b would need to be at least 96"
- Result: flange buckling was not a controlling limit state


Sources: PennDOT and City of Pittsburgh

Local Effects: Tension Tie Plate Tension


- Strut-and-tie model of the lowest panel of the leg and the shoe
- Demonstrates that the geometry of the shoe puts the plate into tension
 - Region of the web with corrosion holes is largely in a compression stress field
- FHWA analysis established remaining section required to control rating:

Asphalt	k factor	Operating R.F.	Equiv. $A_{remaining}$
5.6"	0.75	0.92	6.97in ²
5.6"	1.2	0.17	6.71 <i>in</i> ²
5.6"	1.4	-0.66	N/A
5.6	1.2	0.08 (3 Tons)	$6.59in^2$

Measured remaining area: as little as 2.2in²

U.S. Department

NTSB Recommendations

"...was the failure of the transverse tie plate on the southwest leg of the bridge, a fracture-critical member (nonredundant steel tension member), due to corrosion and section loss resulting from the City of Pittsburgh's failure to act on repeated maintenance and repair recommendations from inspection reports. Contributing to the collapse were the poor quality of inspections, the incomplete identification of the bridge's fracture-critical members (nonredundant steel tension members), and the incorrect load rating calculations for the bridge. Also contributing to the collapse was insufficient oversight by the Pennsylvania Department of Transportation of the City of Pittsburgh's bridge inspection program."

- Require one time review of NSTM inspection procedures for steel frames to ensure that all fracture critical members are identified and inspected.
- 2. Update the BIRM to address the identification of localized tension zones in members partially or fully in tension.
- 3. Update the BIRM to include information on the selection, frequency of use, and application of NDE approaches to measuring asphalt wearing surface thickness.

- 4. Establish a process for targeted reviews of safety issues identified in this investigation, including
 - a) Bridge owners' determinations that a new load rating is required
 - b) Appropriateness of assumptions used in the load rating of deteriorated structures
- 5. Incorporate the findings of this investigation into bridge inspection training courses and use the Fern Hollow Bridge as a case study.

WISDOT'S 1ST DESIGN-BUILD PROJECT

WIS-130 Bridges over the Wisconsin River

May 23, 2024

Introductions

Laura Shadewald, PEStructures Development
Chief

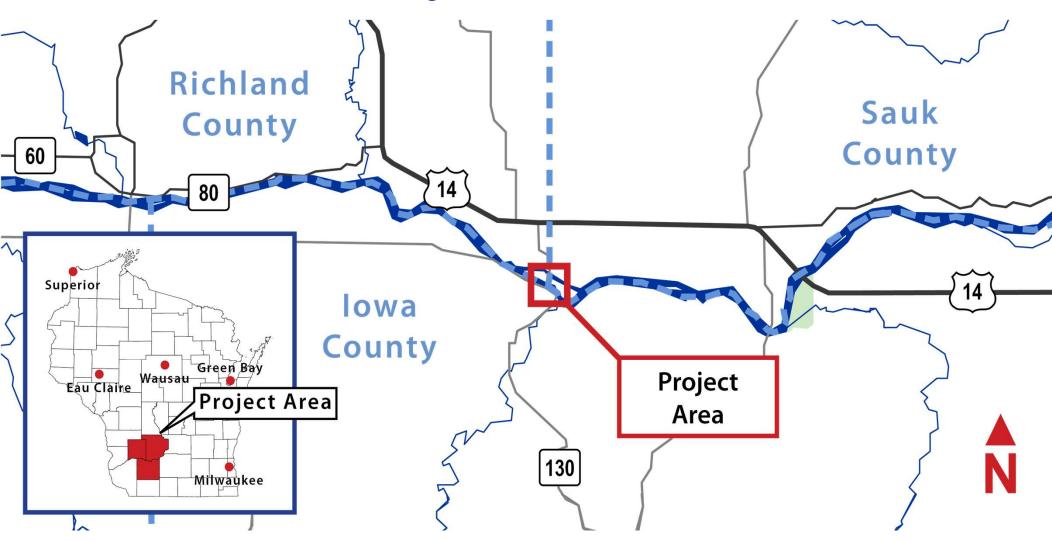
Brent Freeman, PEDB Project Manager

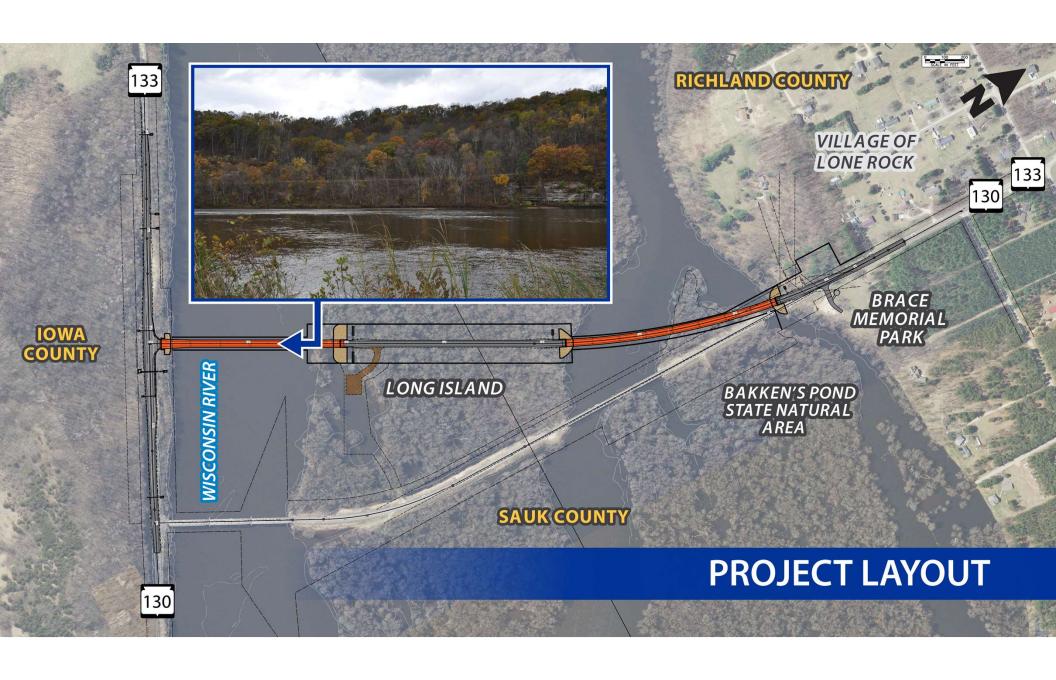
Bill Dreher, PEDB Bridge Design
Engineer

Vinod Patel, PE, SE

DB Lead Bridge

Design Engineer



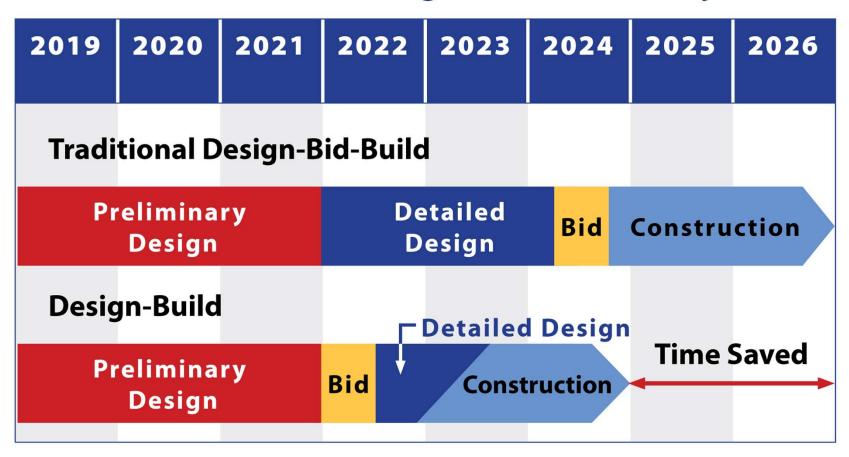


Project Location

Project Need

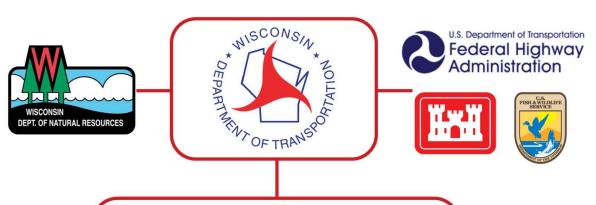
Existing Truss Bridges

- Built in early 1930s / 1940s
- End of design life
- Structurally deficient
- Functionally obsolete
- Bridges get struck by large trucks
- Poor intersection geometry



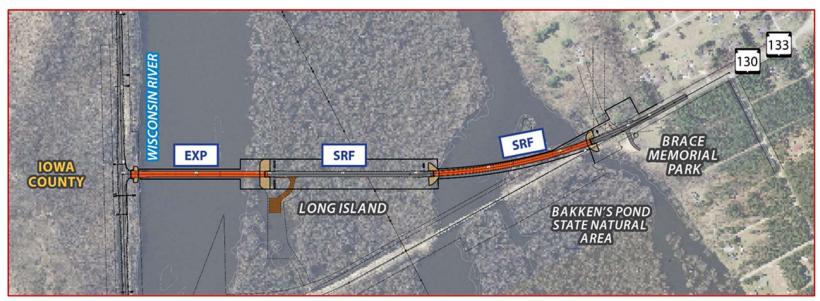
Why Design-Build Delivery was Chosen

- Environmental document & preliminary design complete
- Desire for an accelerated schedule to address pressing needs through accelerated procurement
- Well-defined scope, yet flexible enough to allow for efficiencies and innovation
- Appropriate size and complexity
- Minimal utility conflicts
- Minimal real estate
- No concern with contractor interest or lack of proposers


Time Saved with Design-Build

Traffic on New Bridges Two Years Early!

Project Team



D-B Team

Creating the D-B Team

- Teaming
 - SRF Internal discussions in 2019
 - KNA and SRF contact in late 2020
 - WisDOT industry review workshops
 - WisDOT D-B projects announced to industry in summer 2021
 - SRF and KNA immediately teamed
 - Desired major river crossing and WisDOT experience – added EXP
 - Request for Qualifications issued November 2021, Statements of Qualifications due January 2022
 - Request for Proposals issued February 2022, Technical and Price Proposals due May 2022

Request for Qualifications (RFQ)

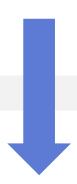
- Statement of Qualifications (SOQ)
 - Know & Understand the Project Goals
 - Select the Right Team
 - Experience
 - Scope of work –and– as teammates
 - KNA and SRF long history as DB teammates
 - EXP major river crossings design experience
 - AET added for geotechnical and environmental
 - Added Hoffman as a major contractor partner – grading/earthwork subcontractor

Request for Proposals (RFP)

Process

- Pursuit Schedule 3 months to develop technical and price proposals
- o Instructions to Proposers (ITP), RFP Books 1 to 3, and RID review
- DB Team Meetings
- Requests for Clarifications, Q&A
- One-on-One Meetings with DOT
- SOQ Modifications (if necessary)
- Alternate Technical Concepts (ATC) development and review, and finalizing
- o Design Concepts development and review, and finalizing
- Estimating
 - Subcontractors and Suppliers outreach and coaching, including all our DBEs
- Technical Proposal development, review, finalize
- ~ Final Drice Pronocal

Alternate Technical Concept (ATC)


Objective: Benefit from DB's Innovative Solutions and Construction Means & Methods

Reduce Cost & Construction Duration

Reduce Impacts

Improve Constructability Maintain Quality & Safety

Other Considerations:

- Durability
- Life-cycle Maintenance
- Aesthetics
- Construction Safety

ATC

D-B Mechanism to get DOT's Pre-

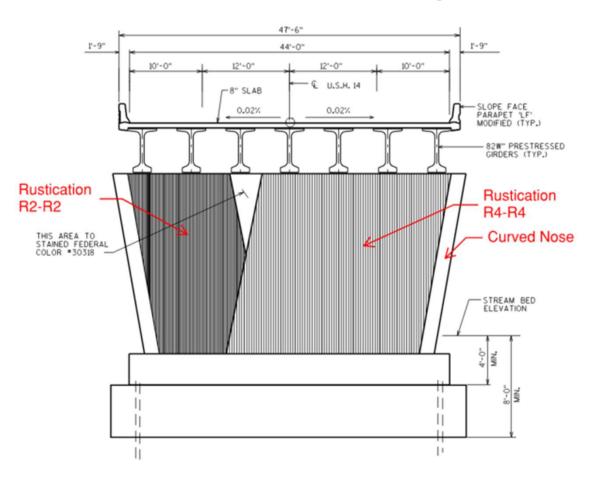
approval

ATC's

Summary of ATC's

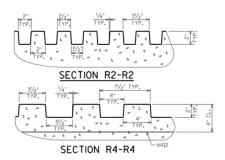
Kraemer North America				Incorporated in	
Resubmitted Final ATC Responses		es	- From 4/8/22 Submital Deadline	Design-Builder's	
#	Subject	Date Received	Response - WisDOT	Proposal Proposal	Notes
ATC 2	C 2 Longer Continuous Span		The submitted ATC is Approved.	YES	Used at South bridge
ATC 3	C 3 Reinforced Soil Slopes		The submitted ATC is Approved.	NO	
ATC 5	Alternate Pier Types	3/17/2022	The submitted ATC is Approved.	YES	
ATC 6	Shorter South Bridge, Optimize Pier Location	3/19/2022	The submitted ATC is Conditionally Approved. Condition: The required permits for the Project are obtained based on the associated natural resource impacts of this ATC.	YES	
ATC 7	South Bridge-Alternate Span Configuration	3/19/2022	The submitted ATC is Approved.	NO	
ATC 8	North Bridge-Alternate Span Configuration	3/19/2022	The submitted ATC is Approved.	YES	
ATC 13	MSE Walls	3/25/2022	The submitted ATC is Approved.	YES	

ATC – Bridge Piers and Girders

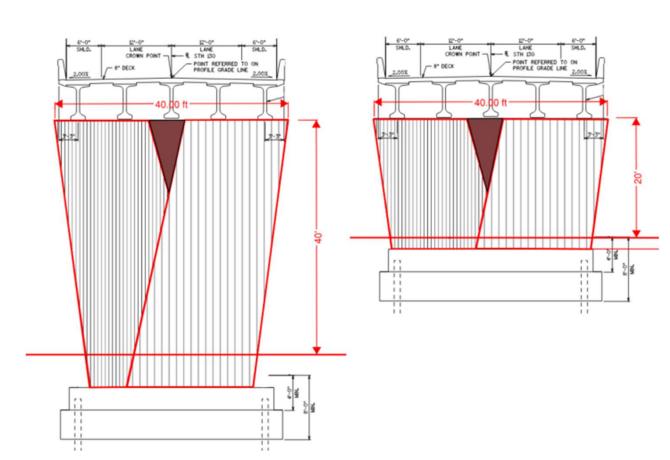

North Bridge

- Three piers eliminated with increase to 72W girders from 45Ws
 - Required roadway profile grade raise
- Savings per pier estimated at \$217k (before design optimization)
- Pier type change to hammerhead style from reverse trapezoid estimated at \$100k
 per pier (before final rebar detailing) and one week saved on schedule per pier

South Bridge


- One pier eliminated with shorter bridge, alternate span configuration and girder design modifications - \$217k saved
- Pier type change to hammerhead design at \$100k per pier (before final rebar detailing) and one week saved on schedule per pier
- Overall savings from changes to piers amounted to over \$2,000,000 and 12 weeks construction schedule savings

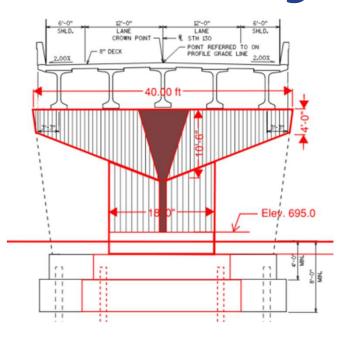
Bridge Piers - RFP

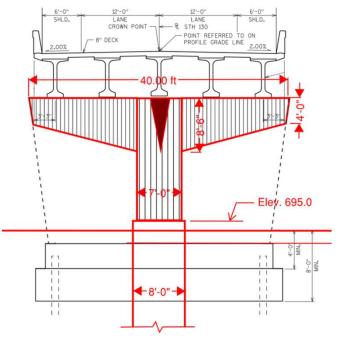


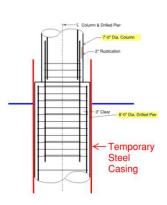
RFP Requirements

- Trapezoidal Piers similar as the US 14 Bridge
- Vertical Rustication on both faces
- Slanted Curved Noses with Rustication

Bridge Piers - RFP

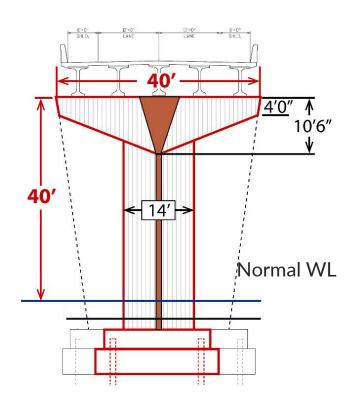

Visual Disparity


- US 14
 - All piers same height 24′
 - Uniform width @ water level
- WIS-130
 - o Pier height varies from 40' to 20'
 - o Width @ water level varies from 26' to 33'


Potential for Improvements

- Reduce Materials / Visual Mass
- Reduce cost
- Reduce construction time
- Reduce footprint / wetland impacts
- Reduce scour potential

Bridge Piers – ATC #5


ATC #5A

- Hammerhead Pier w/Oblong Shaft
- Pile supported footing
- Construct with Cofferdam

ATC #5B

- Hammerhead Pier w/Round Shaft
- Single Drilled Shaft Foundation
- Shaft transition above Design Water Level
- Construct with Temporary Casing

Bridge Piers – Final ATC

Benefits

- Compact size
- Smaller footprint / cofferdam & seal
- Less impacts to sensitive wetlands
- Less cost
- Less time to construct
- Better visual quality
- More openness for river users greater visibility of surrounding natural beauty
- Structural benefits
 - Lesser scour depth
 - Less ice force

Bridge Piers – Renderings / Photo

RFP Base Case

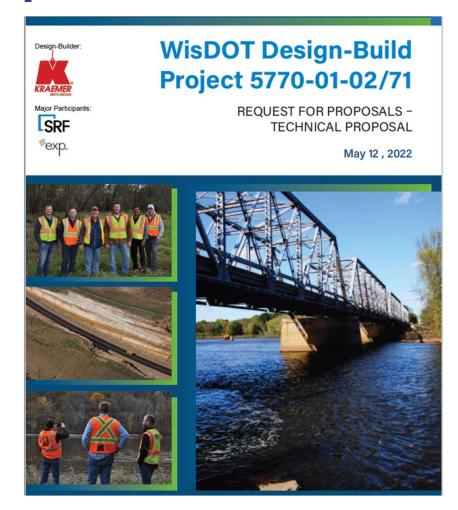
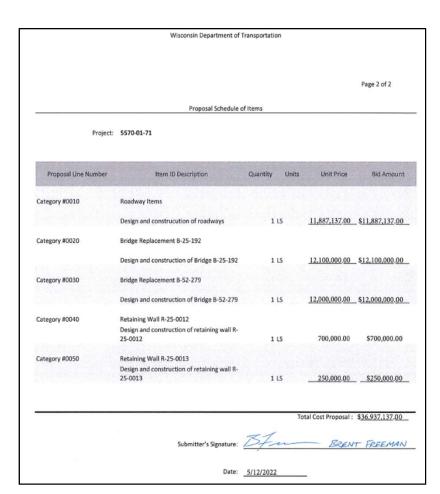

<u>ATC</u>

Photo of As-Built Pier


Technical Proposal

- Executive Summary
- Narratives
 - Design Features
 - Environmental Compliance Plan
 - Mobility with the Project Corridor
 - Conceptual Designs
- Appendices
 - Organizational Chart
 - ATCs Documentation
 - Progress Schedule
 - Roll Plot of Conceptual Design of Project
 - Proposer Information, Certifications, and Documents (the legal stuff)

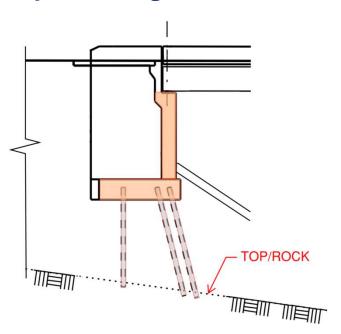
Price Proposal

- Bid Certification
- Bid Bond
- Bid Form
 - Standard Form with Lump Sum Prices for each of the five bid items
 - one for each structure and one for the roadway/all other work
- DBE certifications and commitments
- Above is what actually gets submitted. The effort to get to that point requires many more bullet points!

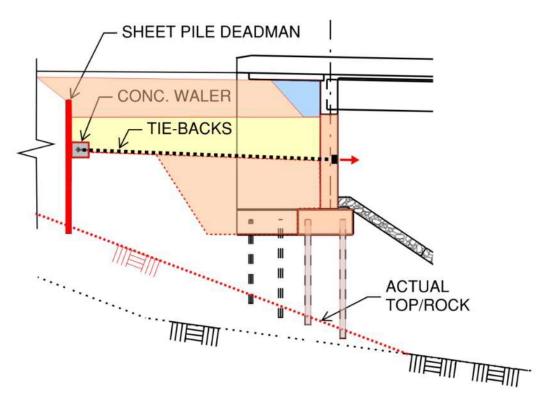
- South Bridge
 - South abutment design
 - Pier 1 foundation design
 - Bridge configuration
 - Retaining walls
- North Bridge
 - Drop girder line
 - South abutment design

- South Bridge: South Abutment (background)
 - Underlying bedrock slopes down from South to North and West to East
 - Located mid slope of steep slope between river and two-lane STH 133.
 - Tall abutment body
 - Permanent tieback and deadman system required
 - Curved wingwalls
 - Retaining walls tied into wing walls
 - Tough Access
 - Complex temporary shoring required
 - Construction completed during full closure of STH 133

- South Bridge: South Abutment Design Contractor Considerations
 - Schedule constraints
 - Completion tied in with STH 133 roadway improvements, which were completed under full closure of STH 133 in 120 calendar days
 - No access from existing STH 133 prior to our improvements, when road was open to traffic
 - Access from river to begin work early
 - Complex, multi-staged and tied back temporary shoring system
 - Required for construction sequencing
 - Pre-bored and driven piles into rock
 - Tried to limit pre-boring where possible
 - Wingwalls completed as soon as possible after body constructed
 - MSE Walls tied in to wing walls
 - o Parapets tied into roadway barrier that sit on moment slabs over MSE walls


 South Bridge: South Abutment Design – Contractor Considerations

Complex, multi-stage temporary shoring – required temporary tiebacks



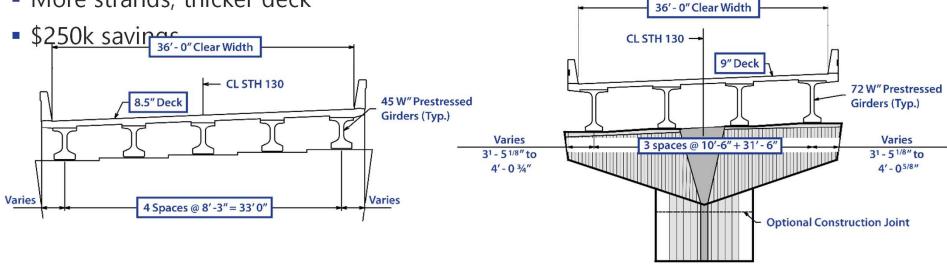
South Bridge – South Abutment Bid Proposal Design

- Rock profile mild slope
- Conventional semi-retaining abutment
- ± 33 ft. height
- Battered piles

South Bridge – South Abutment Final Design

- Additional borings
- Rock profile steep slope
- Concerns with driving battered piles
- Issues with Global Stability
- Semi-retaining abutment with tie-backs
- All vertical piles
- Sheet pile deadman with concrete waler

South Bridge – South Abutment <u>As-built Abutment</u>


Design Refinements/Challenges

North Bridge - Reduce Number of Girder Lines

- Debond strands (2 of 46) vs. increased concrete strength (8.5 ksi)
- Fabrication, transport, setting girders

RFP Cross Section

- Less deck forming (# of bays)
- More strands, thicker deck

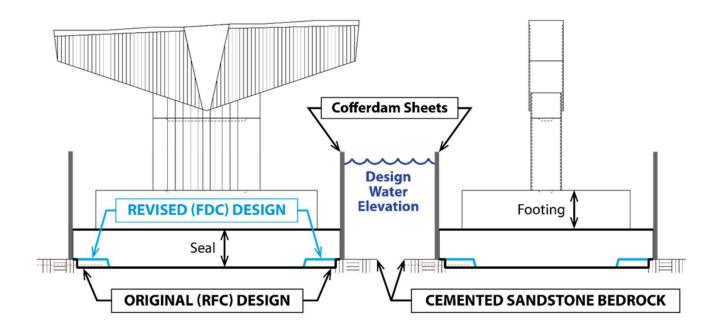
Revised Cross Section

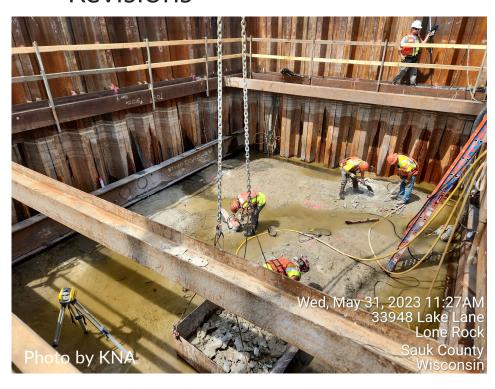
South Bridge

- Pier 1 Foundation Re-design & South Abutment NCR Changes
- Pier 2 Seal Revision

North Bridge

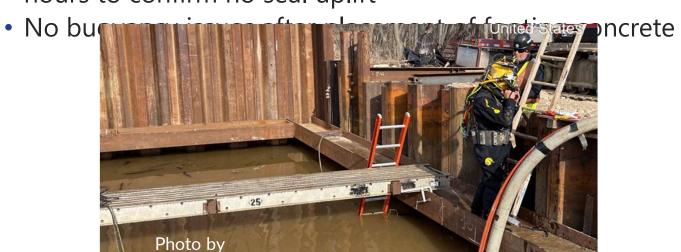
- Pier Spread Footing Seal & Rock Excavation Revisions
- Pier Cap Rebar Detail Modification
- Pier Cap Rebar Bar# 613 Revision
- Girder #5 Stirrups Revised Bottom Leg
- Deck Modular Joint Blockout and Deck Rebar Mods


- North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions
 - Spread footings on concrete seals
 - 500-year scour will expose the sandstone bedrock.
 - Long-term degradation of the bedrock = 0.75 feet
 - Seals embedded 1' minimum into sound rock


- North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions – Contractor Considerations
 - Make all cofferdams same size with thickness as needed
 - Subsurface information from WisDOT
 - Boring locations did not line up with the revised pier layout
 - No new borings
 - Rock excavation limited to 4.5' from edge of seal resulting in reduced seal bearing area

 North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions – Designer Considerations

 North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions



- North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions
 - Nominal bearing resistance increased from 10 ksf to 30 ksf
 - Rock elevations estimated during design
 - Excavation provided accurate rock elevations (higher than estimated)
 - Hydrostatic Pressure
 - Higher rock led to thinner seals
 - Keep top of footing below 'normal water'
 - Footing elevation changes would affect thermal model and pier design
 - Epoxy anchors
 - Reduced design water elevation

- North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions
 - Hydrostatic Pressure
 - Hydraulic conductivity of sandstone
 - Any significant seepage through bedrock would be through joints or fractures
 - Uplift force would be hydrostatic pressure acting over the area of the fractures within the seal footprint
 - Assume 50% of seal footprint subjected to full hydrostatic pressure

- North Bridge: Pier Spread Footing Seal & Rock Excavation Revisions
 - Hydrostatic Pressure
 - Excavation inspected by diver to ensure no significant joints or fractures
 - Buoyancy forces develop shortly after dewatering. Wait at least 24 hours to confirm no seal uplift

DB – Owner's Perspective

- A learning process!
- Preferences vs. Contractual Requirements
- Submittal & Review Processes
- Different contract documents
- Teamwork!

Thank You!

Wisconsin Highway Research Program

James Luebke P.E.
Policy and Standards Engineer

WisDOT Structural Engineers Symposium University of Wisconsin-Madison Union South, Madison WI

May 23, 2024

Overview

- WHRP
- Recently Completed Projects
- Active Projects

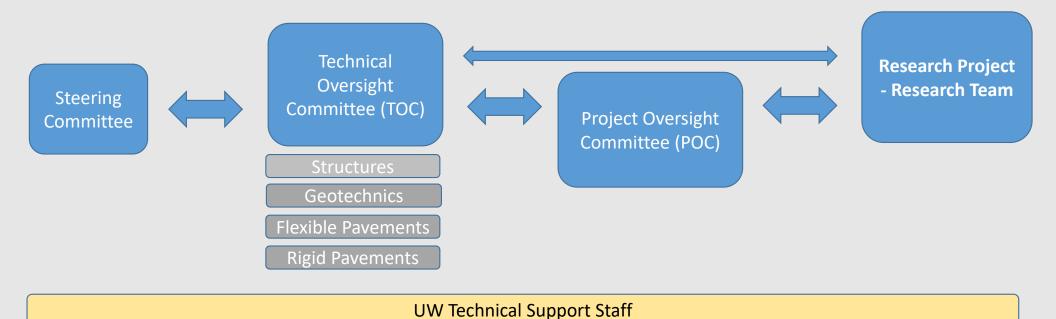
Wisconsin Highway Research Program (WHRP) Overview

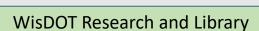
- Established in 1998
- Collaboration with the University of Wisconsin Madison
- Four research areas
 - Flexible Pavements
 - Rigid Pavements
 - Geotechnics
 - Structures
- GOAL: Practical research implementable results

WHRP

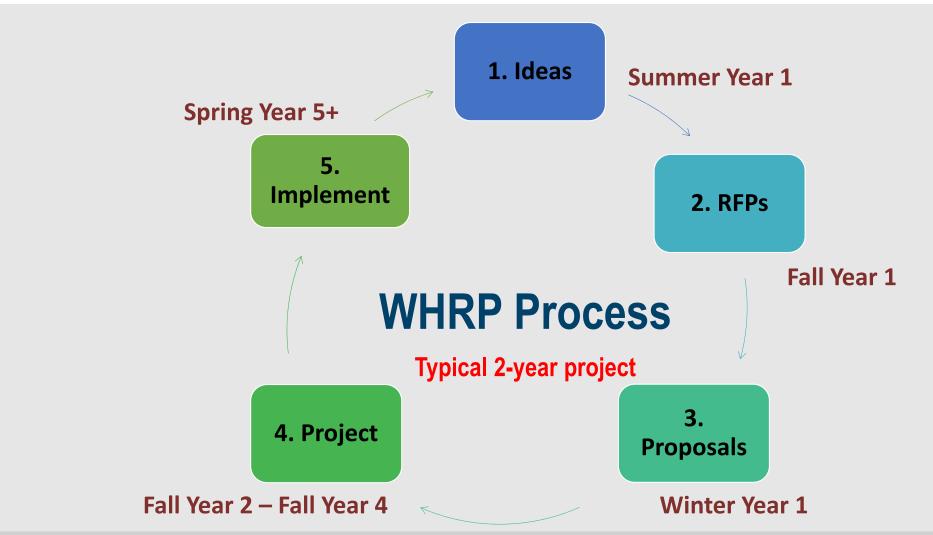
- Better Ways to Design, Build and Reconstruct
- Selected and overseen by WisDOT, Academia, Industry, Consulting Engineers, and the FHWA.
- Structures Area 1 to 2 projects/Year

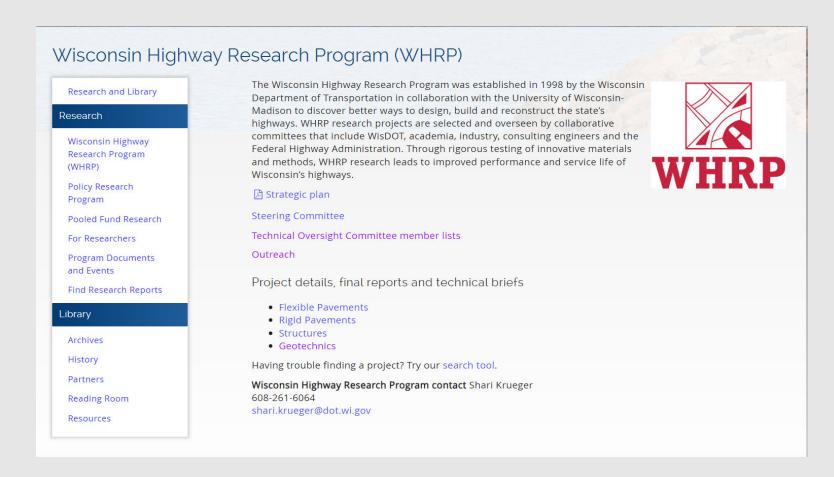
WHRP Funding


- WHRP project funding is approximately \$1 million annually
- Projects are funded by:
 - ■80% FHWA federal funds (SPR, Part B Research), and
 - 20% WisDOT state funds



WHRP Organization





Website: https://wisconsindot.gov/Pages/about-wisdot/research/whrp.aspx

Structures - Technical Oversight Committee (TOC)

Structures

James Luebke, Chair

WisDOT Bureau of Structures

Joe Balice (non-voting)

Federal Highway Administration

Ruth Coisman

WisDOT Bureau of Structures

Jared Marugg

Kraemer North America

Travis McDaniel

WisDOT Bureau of Structures

Tadd Owens

CORRE

Dave Pantzlaff

Ayres Associates

Jose Pincheira

University of Wisconsin - Madison

Laura Shadewald

WisDOT Bureau of Structures

Andrew Smith

WisDOT Bureau of Structures

Anthony Stakston

WisDOT Bureau of Structures

Habib Tabatabai

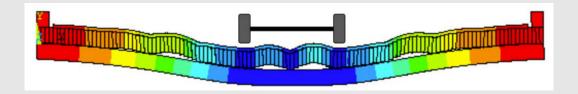
University of Wisconsin - Milwaukee

Baolin Wan

Marquette University

Recently Completed Projects

- Analytical and Testing Methods for Rating Longitudinal Laminated Timber Slab Bridges
- Optimizing Bridge Abutment Slope Protection at Stream Crossings
- Improving Bridge Concrete Overlay Performance



Timber Slab Bridges

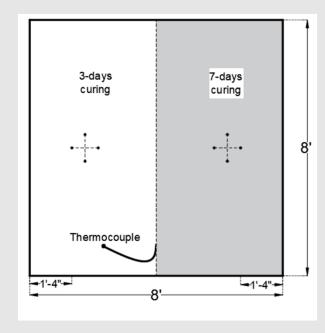
- Objective: Develop a more accurate and reliable determination of wheel load distribution
- Research Benefit: Avoided new or lower weight postings (70+/-)

0092-20-01 Analytical and Testing Methods for Rating Longitudinal Laminated Timber Slab Bridges (12/21)

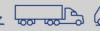
Timber Slab Bridges

- Field Tested 10 Bridges
- Developed 3D FE models
- Parametric Study
- Validated New Equation -**Equivalent Strip Width**

0092-20-01 Analytical and Testing Methods for Rating Longitudinal Laminated Timber Slab Bridges (12/21)



Improving Bridge Concrete Overlay Performance


- Experimental Work Slab Tests:
 - (2) cure durations (3 and 7 day)
 - (7) different overlay mixes

Improving Bridge Concrete Overlay Performance

Mixture	Mix 1	Mix 2	Mix 3	Mix 4	Mix 5	Mix 6	Mix 7
Designation	E-IL	FRC	CR-15	FRC-15	FA	LMC	E-I
				Grade E			
		Grade	Grade E	Reduced	Grade E	Latex	
Description	Grade E	E, PVA	Reduced	Cement	15% Fly	Modified	Grade E
		Fibers	Cement	PVA	Ash	Mix	
				Fiber			
Cement Type	IL	IL	止	IL	IL	IL	I
Sand, dry (lbs)	1405	1405	1405	1405	1405	1405	1405
Gravel, dry (lbs)	1405	1405	1405	1405	1405	1405	1405
Cement	823	823	700	700	700	659	823
Water-Cement Ratio	0.324	0.324	0.324	0.324	0.324	0.324	0.324
Water reducer (oz)	To meet slump requirement						
Air Entrainment (oz)	To meet air content requirement						
PVA fiber (lbs)		1.5		1.5			
Fly Ash (lbs)					123		
Latex (lbs.)						139	

Improving Bridge Concrete Overlay Performance

- Summary and Conclusions
 - Heat-of-hydration (calorimetry) tests indicated that Type IL cement can generate higher peaks of heat flow compared Type I.
 - Reduction of cement content resulted in reduced heat flow for both IL and OPC.
 - Replacing cement with fly ash (0, 10%, 15%, and 20% replacement) resulted in progressively smaller heat flow peaks.

Improving Bridge Concrete Overlay Performance

- Recommendations:
 - Modifications to the Mix Design
 - Increase Concrete Cure
 - Perform Deck Repairs Before Placing the Overlay

Optimizing Bridge Abutment Slope Protection at Stream Crossings

- Develop guidance for identifying performance issues associated with slope protection.
- Develop guidance with life-cycle cost considerations.

0092-21-02 Optimizing Bridge Abutment Slope Protection at Stream Crossings (12/22)



Active Projects

- Bridge Deck Thermography Verification and Policy
- Vertical and Overhead Concrete Patches
- State of Practice for Specifying and Repairing MSE Walls
- Investigation of MSE Wall Corrosion in Wisconsin (Geotech)
- Investigation of Removing Existing Abutment Exp. Joints (Pre-Contract)

Bridge Deck Thermography

- Specifications IRT data collection.
- State-wide policies on using IRT
- Guidelines on the IRT's accuracy

PI: AECOM PM: Philip Meinel Completion: 10/2024

Vertical and Overhead Concrete Patches

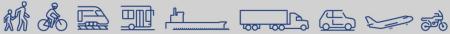
- Investigate and provide material selection guidance and repair strategies for concrete surface repairs.
- Develop patch-repair material installation specifications, installation inspection requirements, and acceptance criteria.
- Investigate the performance of minor to intermediate patch repairs

PI: WJE

PM: Andrew Smith Completion: 10/2025

Investigation of MSE Wall Corrosion in WI

PI: Geocomp, Inc PM: Steven Doocy Completion: 10/2025



State of Practice for Specifying and Repairing MSE Walls

- Identify best practices for MSE wall usage
- Recommendations to maximize MSE wall service life
- Prepare recommendations for specific retrofit solutions.

PI: Applied Research Associates, Inc.

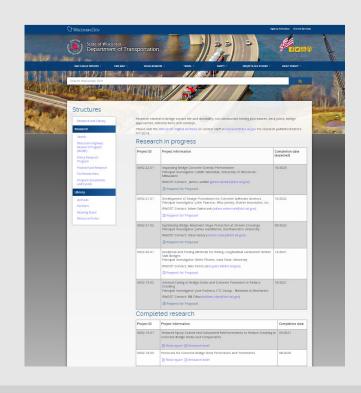
PM: Ruth Coisman Completion: 2/2026

Investigation of Removing Existing Abutment Expansion Joints

- Examine WisDOT's practice of removing existing expansion joints at substructures.
- Define practical limits of substructure conversions.
- Prepare recommendations for converting substructures.

PI: TBA

PM: Laura Shadewald Completion: 10/2026



WHRP Reports:

 https://wisconsindot.gov/Pages/aboutwisdot/research/structures.aspx

Questions

James Luebke, PE
<u>James.luebke@dot.wi.gov</u>
(608) 266-5098

Load Ratings & Mega-Loads

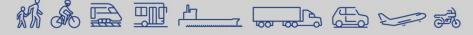
Alex Pence

Supervisor – Automation & Load Ratings

BOS Symposium May 23, 2024

Topic 1: Load Rating FAQs

- Emergency & Posting Vehicle Evaluations
- Where to Find Recent Load Ratings
- Low Load Ratings on Good Bridges
- Wis-SPV Ratings
- Prestressed Girder Shear
- Culvert Ratings


Emergency & Posting Vehicle Evaluations

When do posting / emergency vehicles need to be analyzed?

Vehicles	Inventory Rating	Operating Rating
Emergency Vehicles	HS20 RF < 1.0 HL93 RF < 0.9	
SHVs		HS20 RF < 1.3
31173		HL93 RF < 1.0
Other Posting Vehicles		HS20 RF < 1.0 HL93 RF < 1.0

Where to Find Recent Load Ratings?

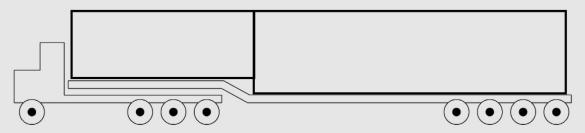
HSIS Rating Tab

		HSI - B-67-204	
home go∨ b670204		·	≡ ∞
B 47 004 07155 044005	10 00 00		
B-67-204 CTH ES (MAIN ST) over MUKWONAG General Inventory	O RIVER		
Bridge			
Main Abutment Pier Span Geon	netry Approach Sufficiency	Capacity Rating Hydraulic Expansion Joint	Appraisal ADT
			1495-0000 1-01
Date Inspection 03/01/2022 06/19/21 'DEVAL'	Load rating b	pasis Status Primary	F
	ummary sheet notes	Timisiy	
		sed per NCHRP 20-07 / Task 410.	
Software		**************************************	
BrR 7.1			
Overburden depth (in) 0.0			
0.0			
Design (4)			
Inventory Rating (HSnn RFn.nn)	Load governing member	Operating— Rating (HSnn RFn.nn)	Load governing member
HS13	INTERIOR DECK GIRDER	HS22	INTERIOR DECK GIRDER
Live load factor	Control location	Live load factor	Control location
2.17	50% SPAN 1	1.3	50% SPAN 1
Rating limit state Load Factor Strength	2.0	Rating limit state Load Factor Strength	Lidf 2.0
Rating force effect	Lidf level	Rating force effect	Lldf level
Positive Moment	MULTI	Positive Moment	MULTI
Wis-SPV Rating - Single Lane		Wis-SPV Rating - Multi Lane	
Vehicle weight (kips)	Load governing member INTERIOR DECK GIRDER	Vehicle weight (kips)	Load governing member INTERIOR DECK GIRDER
Live load factor	Control location	Live load factor	Control location
1.3	50% SPAN 1	1.3	50% SPAN 1
Rating limit state	Lidf	Rating limit state	Lidf
Load Factor Strength	1.455	Load Factor Strength	2.0
Rating force effect Positive Moment		Rating force effect Positive Moment	
Loguise Mortieri		Positive Monterii	
Posting and Legal Vehicles (4)			
Emergency Vehicles (2)			±
Enlargency venicles (2)			±
		open summary	
201		Takan sanina ji	

Bridge Data Structure Id: Br-67-204				Traffic Count: 5,700		Truck Traffic %:		
Owner: COUNTY				Overburden Depth (in): Design Load Rating: HS20			ting:	
Municipality: V-Mukwona	go(67153)				Inspection Date: 08-Dec-2008			
Feature On: CTH ES (M.	AIN ST)				NBI Condition	Ratings		
Feature Under: MUKWONAGO RIVER				Deck: 6	Superstructure: 6	Substructure: 7	Culvert: N	
Spans #: Materia		Configurati	600	1	Construction H	listory:	,	
	RETE	IFLAT SL		Length (ft)		W STRUCTUR	E	
oad Rating	Summary							
Manc OR I S	# C		Value:		Load Governing Memb		Force Effect:	LLDF:
Load Rating Ba	sis:		Inventory: HS19		SLAB		Positive Moment	
LFR		Operating:	HS32		SLAB	Positiv	e Moment	0.16
Wiscon	sin Special Perr	mit Vahirlas	MANON	(kips)	Load Governing Memb	per Pating I	Force Effect:	LLDF
VEISCOIL	Sin	gle lane (w/o FWS):		55	ISLAB		ve Moment	0.08
Multi lane (w/o FWS):			1	83	SLAB	Positiv	e Moment	0.16
	ng Analysis	(when required per Wisconsin Br			1			
		GVW (kips): 50.0	Rating Factor:): Load Governing Memb		orce Effect:	LLDF
Load Posti Posting Vehicle	IV		2.09	N/A	SLAB		e Moment	0.16
	Type 3			NI/A				
osting Vehicle	Type 3S2	72.0	2.17	N/A	SLAB		ve Moment	0.16
Posting Vehicle AASHTO	Type 3S2 Type 3-3	72.0 80.0	2.17 2.26	N/A	SLAB	Positiv	ve Moment	0.16
osting Vehicle	Type 3S2 Type 3-3 SU4	72.0 80.0 54.0	2.17 2.26 1.75	N/A N/A	SLAB SLAB	Positiv Positiv	ve Moment	0.16 0.16
Posting Vehicle AASHTO Legal	Type 3S2 Type 3-3 SU4 SU5	72.0 80.0 54.0 62.0	2.17 2.26 1.75 1.65	N/A N/A N/A	SLAB SLAB SLAB	Positiv Positiv Positiv	ve Moment ve Moment ve Moment	0.16 0.16 0.16
Posting Vehicle AASHTO Legal	Type 3S2 Type 3-3 SU4 SU5 SU6	72.0 80.0 54.0 62.0 69.5	2.17 2.26 1.75 1.65 1.49	N/A N/A N/A N/A	SLAB SLAB SLAB SLAB	Positiv Positiv Positiv Positiv	ve Moment ve Moment ve Moment ve Moment	0.16 0.16 0.16 0.16
AASHTO Legal Vehicles	Type 3S2 Type 3-3 SU4 SU5	72.0 80.0 54.0 62.0 69.5 77.5	2.17 2.26 1.75 1.65 1.49 1.41	N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB	Positiv Positiv Positiv Positiv Positiv	ve Moment ve Moment ve Moment ve Moment ve Moment	0.16 0.16 0.16 0.16 0.16
Posting Vehicle AASHTO Legal	Type 3S2 Type 3-3 SU4 SU5 SU6 SU7	72.0 80.0 54.0 62.0 69.5 77.5 98.0	2.17 2.26 1.75 1.65 1.49 1.41 2.63	N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB	Positiv Positiv Positiv Positiv Positiv Positiv	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08
AASHTO Legal Vehicles	Type 3S2 Type 3-3 SU4 SU5 SU6 SU7 PUP	72.0 80.0 54.0 62.0 69.5 77.5 98.0 98.0	2.17 2.26 1.75 1.65 1.49 1.41 2.63 2.7	N/A N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB SLAB SLAB	Positiv Positiv Positiv Positiv Positiv Positiv Positiv	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08 0.08
AASHTO Legal Vehicles	Type 3S2 Type 3-3 SU4 SU5 SU6 SU7 PUP Semi	72.0 80.0 54.0 62.0 69.5 77.5 98.0	2.17 2.26 1.75 1.65 1.49 1.41 2.63	N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB	Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08
AASHTO Legal Vehicles WisDOT Spec.	Type 3S2 Type 3-3 SU4 SU5 SU6 SU7 PUP Semi EV2 EV3	72.0 80.0 54.0 62.0 69.5 77.5 98.0 98.0 57.5 86.0	2.17 2.26 1.75 1.65 1.49 1.41 2.63 2.7 1.8	N/A N/A N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB SLAB SLAB	Positiv	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08 0.08 0.08
AASHTO Legal Vehicles WisDOT Spec.	Type 3S2 Type 3-3 SU4 SU5 SU6 SU7 PUP Semi EV2 EV3	72.0 80.0 54.0 62.0 69.5 77.5 98.0 98.0 57.5	2.17 2.26 1.75 1.65 1.49 1.41 2.63 2.7 1.8	N/A N/A N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB SLAB SLAB	Positiv	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08 0.08 0.08
AASHTO Legal Vehicles WisDOT Spec.	Type 3S2 Type 3-3 SU4 SU5 SU5 SU6 SU7 PUP Semi EV2 EV3 al/Specialized F	72.0 80.0 54.0 62.0 69.5 77.5 98.0 98.0 57.5 86.0	2.17 2.26 1.75 1.65 1.49 1.41 2.63 2.7 1.8	N/A N/A N/A N/A N/A N/A N/A N/A	SLAB SLAB SLAB SLAB SLAB SLAB SLAB SLAB	Positin Rating	ve Moment	0.16 0.16 0.16 0.16 0.16 0.08 0.08 0.08

Low Load Ratings on Good Bridges

- Impacts
 - Legal Weight Limit Restrictions
 - OSOW Freight Restrictions
 - Reduced Service Life
 - Inspection Frequency (Inv RF < 1.0)
- Design Phase
 - Consider cost/benefit of refined analysis, alternate methods, or strengthening
 - Reach out to BOS Rating Unit to discuss



Wis-SPV Ratings

- Wisconsin Bridge Manual Section 45.12
 - Target MVW > 190 kips w/ Single-Lane Loading
 - Plus FWS for new designs
 - Report ratings w/o FWS on plans and load rating summary sheet
 - Consider <u>Interior</u> Girders or Slab Strips only
 - For rehab or in-service bridge ratings, contact BOS if MVW < 190 kips
 - Below 170 kips can restrict annual permits

Prestressed Girder Shear

45.6.1 Prestressed Concrete

For bridges designed to be continuous over interior supports, the negative capacity shall come from the reinforcing steel in the concrete deck. Conservatively, only the top mat of steel deck reinforcing steel should be considered when rating for negative moment. If this assumption results in abnormally low ratings for negative moment, contact the Bureau of Structures Rating Unit for consultation.

Elastic gains in prestressed concrete elements shall be neglected for a conservative approach.

Shear design equations for prestressed concrete bridges have evolved through various revisions of the AASHTO design code. Because of this, prestressed concrete bridges designed during the 1960s and 1970s may not meet current shear capacity requirements. Shear capacity should be calculated based on the most current AASHTO code, either LFR or LRFR. Shear should be considered when determining the controlling ratings for a structure. If shear capacities are determined to be insufficient, the load rating engineer of record should contact the Bureau of Structures Rating Unit for consultation. If an existing bridge was designed using the Simplified Procedure for shear, the Simplified Procedure LRFD [5.8.3.4.3] (7th Edition - 2014) may be considered for shear ratings.

Concrete Bridge Shear Load Rating Synthesis Report

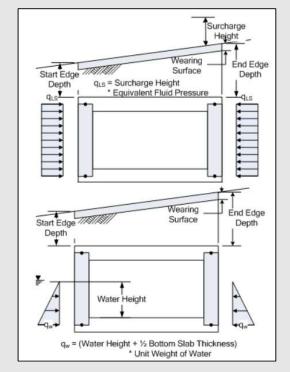
Publication No. FHWA-HIF-18-061 Federal Highway Administration Office of Infrastructure

November 2018

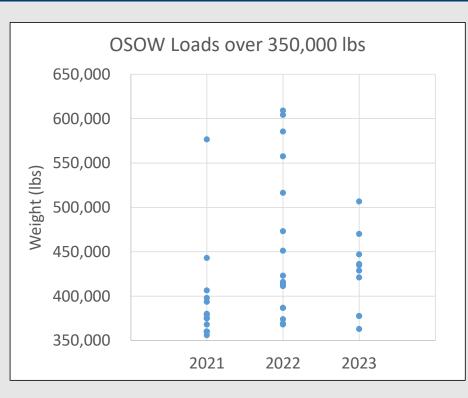
CONCRETE BRIDGE SHEAR LOAD RATING GUIDE AND EXAMPLES

USING THE MODIFIED COMPRESSION FIELD THEORY

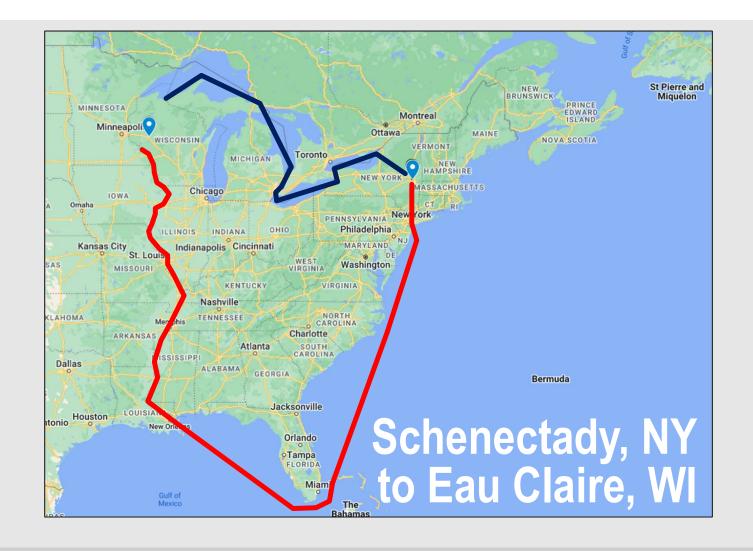
Publication No: FHWA-HIF-22-025 Office of Bridges and Structures April 2022



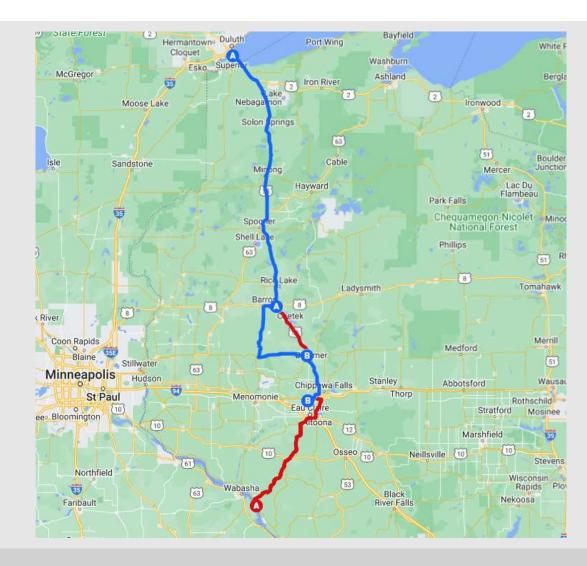
Culvert Load Ratings


- Bridge Manual Ch. 45 Update (July 2023)
- 3 Methods
 - Calculated
 - Ideal method; required for most concrete boxes
 - Assigned
 - Requires stamped plans/calcs with design load & fill depth
 - Must meet minimum original design standards
 - Field Evaluation & Engineering Judgment
 - Use when Calculated or Assigned cannot be used
 - Bridge Manual has recommended ratings and postings based on condition

Topic 2: Mega-Loads in Wisconsin

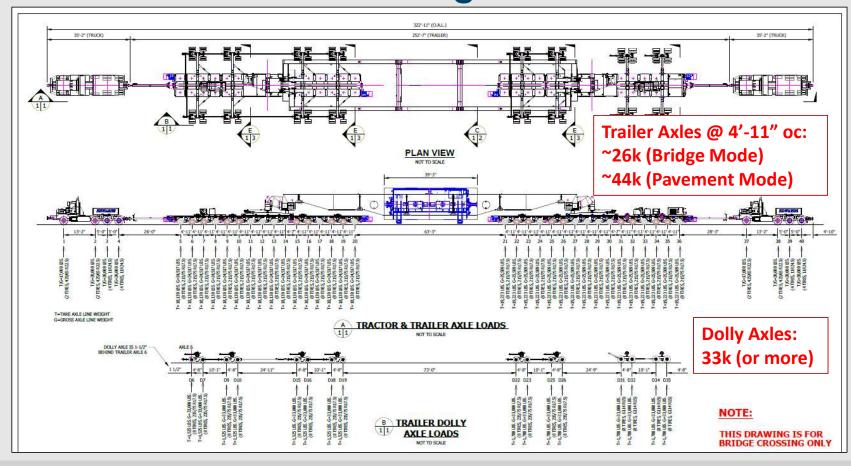

1.4M-Lb Mega-Load: Xcel Energy Generator

- 658,000-lb generator
- Converts natural gas turbine output into electricity
- Green Energy initiative
- Destination: Eau Claire, WI (Xcel Energy)
 - Originally could not get rail clearance
 - Planned to travel by barge
- Schedule: Summer 2024

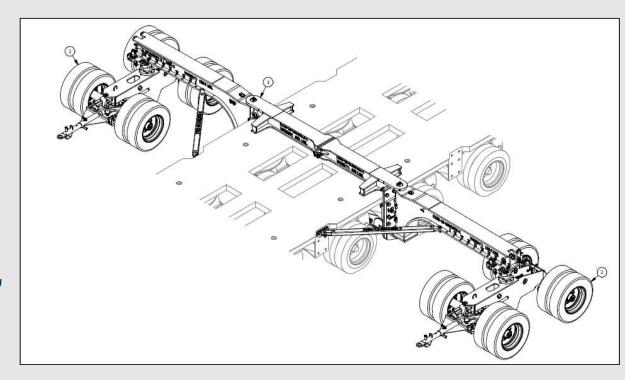


Routes through Wisconsin

- From Alma (Mississippi)
- From Superior (Great Lakes)
 - First Attempt
 - Detour for Denied Bridges

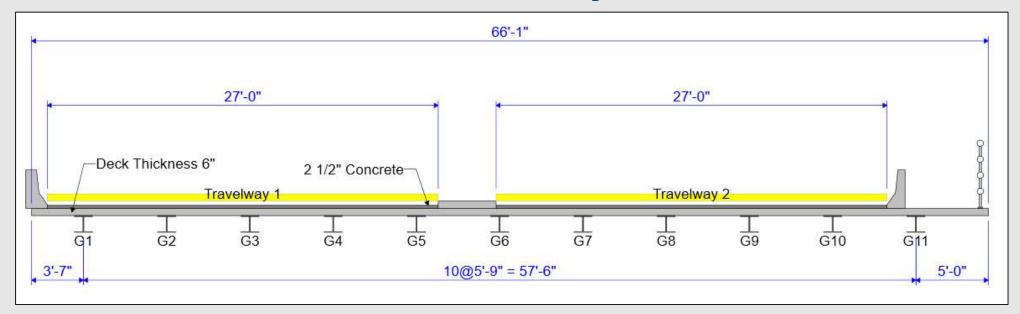


Load Configuration

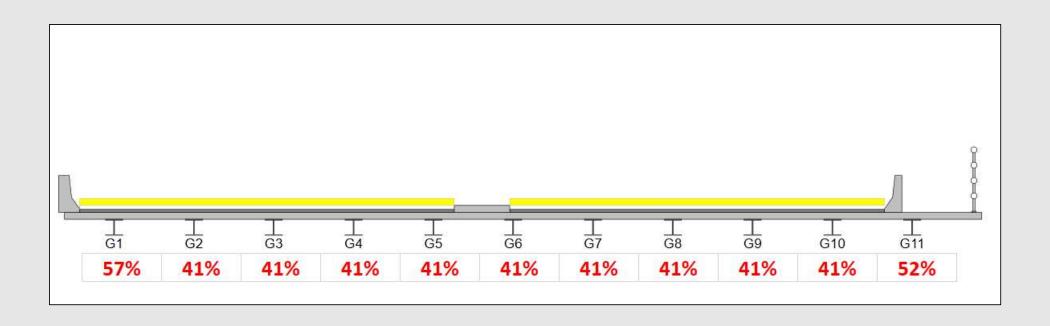


Load Configuration

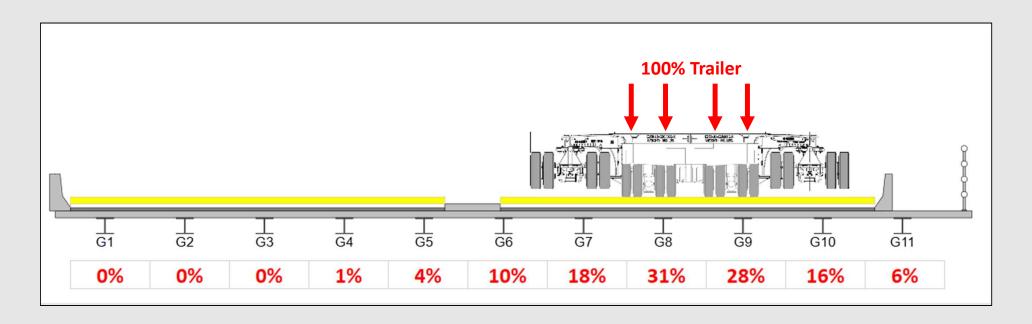
- 1,482,422 lbs
- 40 axles
- 2 trailers
- 2 trucks
- 322'-11" length
- 9'-10" wide "pavement mode"
- 31'-2" wide "bridge mode"



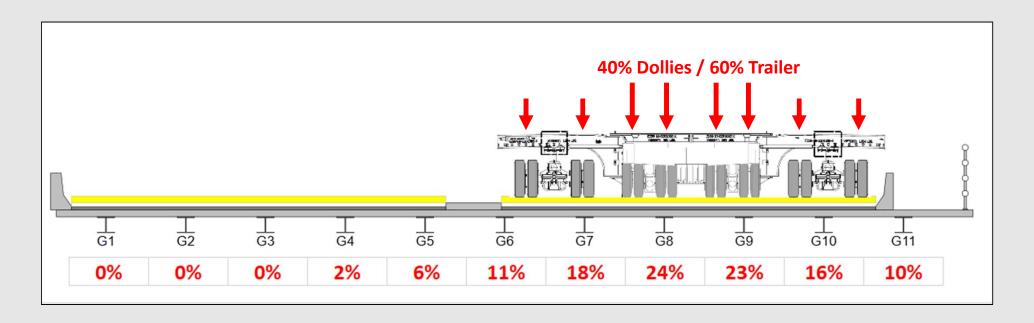
Example Bridge w/ Non-Standard Gage (NSG) Vehicle Analysis



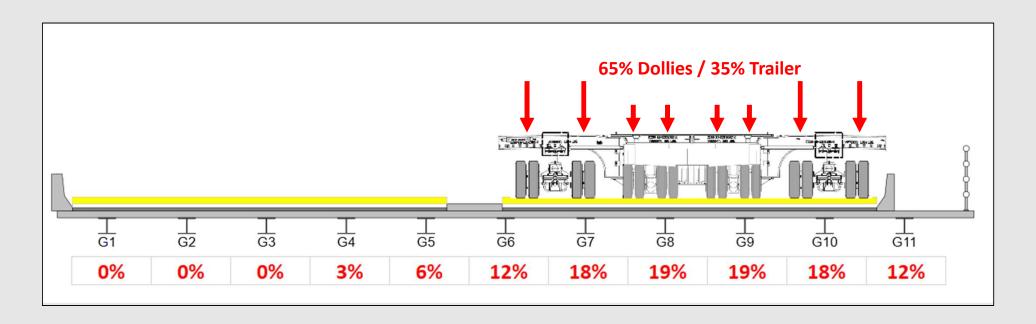
AASHTO Std Spec (LFD/LFR) Standard Truck Axle Live Load Distribution



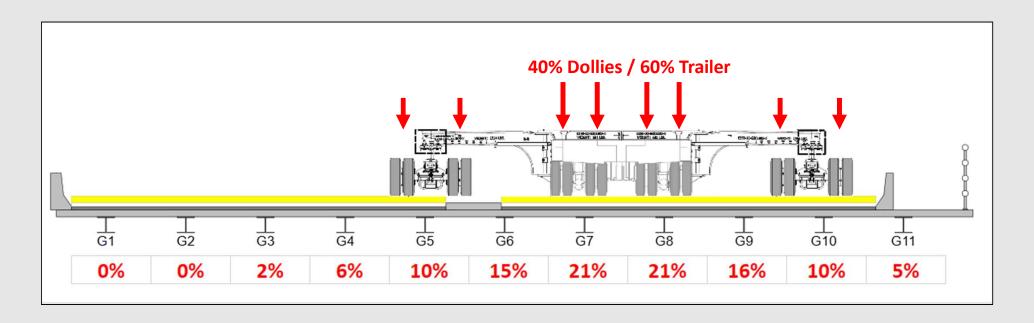
Roadway Configuration (Dollies Lifted)



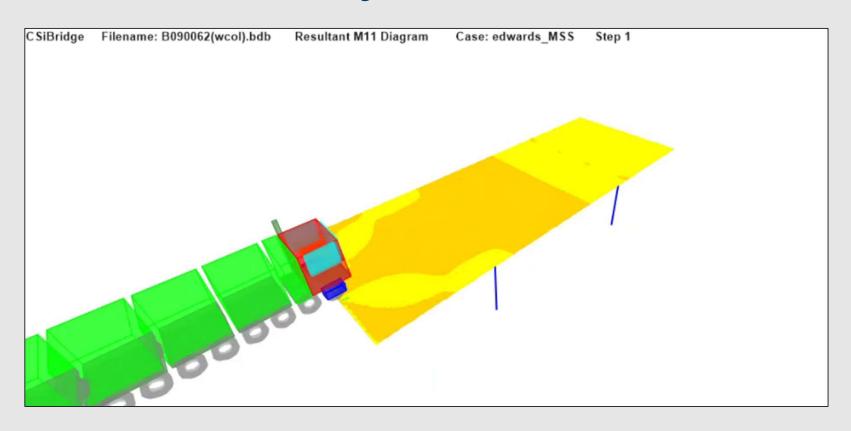
Balanced Load on Dollies, Minimum Width



Maximum Load on Dollies, Minimum Width



Balanced Load on Dollies, Maximum Width

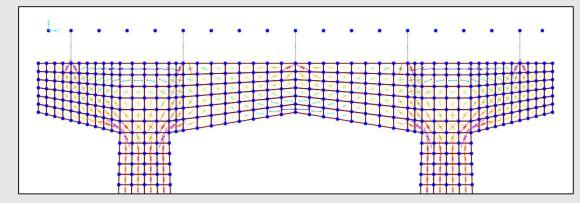


3D Analysis for Slabs

Analysis Refinement Options

- Steel Girder Positive Moment
 - Elastic vs. Plastic
- Prestressed Girder Shear
 - LFR vs. LRFR, General vs. Simplified, Ignore
- Deck Reinforcement Negative Moment
 - Top Mat only vs. Top & Bottom
- Moment Redistribution
 - Decrease Negative Moment, Increase Positive Moment
- LRFR instead of LFR
 - Usually better for PS girder shear
 - Allows lower LL factor for escorted permit loads





Other Rating Checks

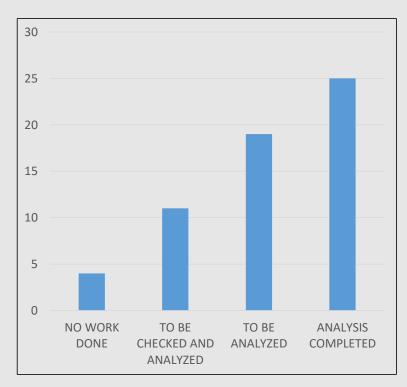
- Inspection Report Review
- Culverts
- Pier Caps
 - Traditional Beam Analysis
 - FEA / Strut-and-Tie

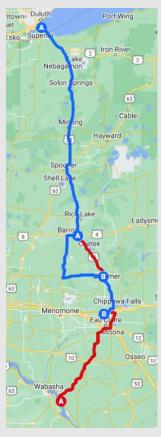
Permit Fees

- Bridge Review
 - \$10 per hour \rightarrow \$10 flat fee?
 - Unchanged since 1983
- Other Special Investigation
 - Opened Project ID
 - Tracking Actual Costs
 - BOS + Consultant Resources

Trans 250.05 Special investigation fees.

- (1) The department shall charge the following special investigation fees:
 - (a) For each single trip permit for a width exceeding 16 feet, a region review fee of \$10 for each region through which the load is routed to cover the costs incurred by the region office in reviewing the adequacy of the route for the proposed move.
 - (b) For each single trip permit for a gross weight exceeding 150,000 pounds, a bridge review fee of \$10 per hour for each employee-hour or fraction thereof required to review the adequacy of the bridges to support the proposed load to cover the costs incurred by the department for this review.
 - (c) For any other special investigation deemed necessary by the department because of the size or weight of the load or of the route to be travelled, the actual cost incurred by the department in making the investigation.
- (2) The fees under sub. (1) shall be charged regardless of whether the special investigation is conducted before or after a permit application is received and regardless of whether a permit is issued or denied.


History: Cr. Register, September, 1983, No. 333, eff. 10-1-83; correction in (1) (a) made under s. 13.92 (4) (b) 6., Stats., Register February 2013 No. 686.



Progress

- Alma Eau Claire (27)
 - 7 approved
 - 1 denied
 - 19 incomplete
- Superior Eau Claire (49)
 - 24 approved
 - 2 denied
 - 23 incomplete
 - 7 removed from route
- Superior Eau Claire Detour (14)
 - 14 incomplete
- Most Recent Route (50)
 - Evaluation ~85% complete

Hold Up!

Letter to WisDOT

"Notification to terminate the Superior to Eau Claire permitting efforts. There was a design change made to this specific generator that enabled it to fit within the needed rail clearance envelope."

"We look forward to partnering with the State of Wisconsin as the rail siding to the project site will still require road transit, in a much smaller-scope (under 10 miles)."

Another Mega-Load!

- Kewaunee Power Station
 - Traveling to Oshkosh, then via rail to Utah
 - October 2024
 - 780,200 lbs
 - Not over a million, but still...
 - 22 axles
 - 219'-6" length
 - 16'-0" width
 - 14 bridges
 - Not 50, but still...

