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Executive Summary
Background

Sign structures in Wisconsin are often founded on groups of driven piles. Published methods for design of
driven pile groups subjected to axial compression or uplift are readily available. However, overturning
loads are predominant for sign foundations, where some piles are subjected to compression and others
uplift. Currently available design methods do not address this condition. A lateral load test of two four-pile
groups was therefore conducted to evaluate load transfer among the piles, especially as the groups
approach failure, and evaluate potential design implications.

Load Test

The load test was performed in Warrensburg, Missouri, at a test site with a significant volume of published
geotechnical test information, including data related to soil strength as well as both axial and lateral load
tests of deep foundations. The site has 10 to 15 ft of stiff clay overburden above shale formations with
highly variable strength. The test consisted of pulling together two four-pile groups: one constructed with
HP10x42 H-piles and the other with 10.75-in. diameter closed-end steel pipe piles backfilled with concrete
(CIP piles). Loads were applied 9 ft above the ground surface to simulate the overturning loads
experienced by sign foundations. Test piles were instrumented with strain gages and ShapeArrayAccel
(SAA) devices to monitor axial loads and bending moments. Displacements and rotations of the sign
structures were monitored with LVDTs, dial gages, and wireline devices. Construction of the two pile
groups was completed over the course of one week. The load test was performed two weeks later after
the concrete had cured sufficiently.

Significant displacements and rotations were achieved during the load test, with the tops of the structures
displacing 10 in. on average when the test was terminated. Measured displacements indicate the tension
piles in both pile groups failed in geotechnical uplift before the test was terminated, displacing
approximately 1.5 in. upward while the compression piles displaced less than 0.5 in downward. The H-
pile group moved more laterally than the CIP pile group, most likely because the H-piles were loaded in
the direction of their weak axis, which results in a lower moment of inertia and an orientation wherein the
flanges of the pile “slice” through the soil. Axial load and bending moment along the piles were interpreted
from strain gage data. Bending moment was also interpreted from the SAA measurements.

Interpretation

Axial load-displacement curves were interpreted from the test measurements. Curves determined for the
H-pile and CIP pile groups are generally similar. Bending moment-displacement curves were also
developed; mobilization of bending moment was generally linear and still increasing at the end of the load
test, which suggests that additional bending resistance remained at the end of the test. Several plots
were created to track mobilization of axial loads and bending moments as the applied load was
increased. The results suggest initial resistance to overturning is provided primarily by the axial force
couple that develops in the compression and tension piles. As the axial load in the tension piles
approaches the ultimate uplift resistance, the contribution of pile head bending moments become more
significant. These trends were examined by modeling the pile groups using Ensoft GROUP. The
calibrated models confirmed the observed trends and suggest additional overturning resistance, beyond
that calculated considering the axial pile resistance alone, can potentially be realized by considering the
contribution of pile head bending moments.

Conclusions

The load tests achieved failure of both pile groups by geotechnical uplift of the tension piles. Interpretation
of the considerable data set collected during the test suggests overturning load transfer for the four-pile
groups typically employed by WisDOT for sign foundations is reasonably predicted from simple
consideration of static equilibrium up to loads where the ultimate uplift resistance is approached. Design
capacity for overturning of four-pile groups can therefore be calculated using (1) pile loads corresponding
to the axial force couple that satisfies bending moment equilibrium of the rigid sign structures and (2) pile



capacities from appropriate design methods for axial and lateral loading of driven piles. Additional load
carrying capacity, beyond that attributed to the axial force couple alone, can potentially be mobilized from
pile head bending moments that develop as the force couple approaches the tension pile uplift capacity.
Some design efficiency could be realized by considering such additional capacity for extreme event
loading cases if the structural capacity of the piles is sufficient and if some inelastic deformation can be
tolerated. Additional load test data is needed to confirm and quantify the potential contribution from pile
head bending resistance.
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1. Introduction

The Wisconsin Department of Transportation (WisDOT) often employs four-pile foundation groups to
support large sign structures, which are subject to a unique loading that is dominated by a large
overturning moment. On a national level, design rationale for such loading is lacking. Design methods
that predict individual pile loads (e.g. pile group analysis software such as Ensoft's GROUP) are
available, but the AAHSTO strength limit resistance factors for single piles in uplift are rather low,
resulting in piles that are likely overdesigned for the subject loading.

A load test of two sign structures similar to those employed by WisDOT, one with H-piles and the other
with cast-in-place (CIP) pipe piles, was conducted to evaluate load transfer among the piles, determine
the appropriate geotechnical limit state, and evaluate potential design implications. This report documents
the load test and accompanying analyses. Background information related to overturning of pile groups is
presented before documenting the experiment, which included design and construction of the pile
structures, instrumentation, and the load test, itself. All results from the extensive instrumentation system
are presented before analyzing two models of the data, one based on static equilibrium and the other on
numerical methods. Finally, the results of the models are interpreted to develop recommendations for
design and potential further research.
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2. Literature Review

Existing methods for designing pile groups subject to overturning were investigated prior to designing the
load test. Other research related to the topic was reviewed as well.

21 Existing Methods for Design of Pile Groups Subject to Overturning

The WisDOT Facilities Development Manual (2014) classifies sign structures into two categories,
overhead sign supports and sign bridges. Overhead sign supports typically carry smaller signs, and the
structures are typically designed by a sign fabricator. Sign bridges carry larger, informational signs, and
the structures are designed by WisDOT’s Bureau of Structures or a consulting engineer. Chapter 39 of
the WisDOT Bridge Manual (2009) provides standard details for sign foundations involving single drilled
shafts for overhead sign supports and cantilever sign bridges. Project-specific foundation design is
required for full span sign bridges and projects that do not meet the requirements for using the standard
details. Typically, the project-specific foundations are also drilled shafts, but driven pile groups are
frequently used as well for sites that are not suited for drilled shafts or spread footings.

Regarding the design of pile group foundations, Chapter 11 of the WisDOT Bridge Manual (2012) states
the pile group capacity may be less than the sum of individual pile capacities for foundations in clay. The
WisDOT Bridge Manual requires an equivalent pier analysis, the procedure for which is outlined in the
AASHTO LRFD Bridge Design Specifications (2014), Sec. 10.7.3.9. The procedure involves computing
two values for pile group capacity and using the lesser as the nominal capacity for pile groups in
compression:

e The sum of the individual pile capacities, multiplied by an efficiency factor varying from 0.65 to 1
depending on pile spacing, the contact between the pile cap and ground surface, and the
stiffness of the soil at the ground surface.

e The capacity of an “equivalent pier” bounded by the piles in the group and including the block of
soil within the piles. The capacity of the equivalent pier is derived from the full shear strength on
the sides of the pile group and tip resistance for the total base area below the piles.

Both the WisDOT and AASHTO manuals state that pile group capacity in sand is always controlled by the
sum of the individual pile capacities.

Similarly, the AASHTO LRFD Bridge Design Specifications procedure for computing the uplift capacity of
driven pile groups involves comparing the sum of the uplift capacities of the individual piles with the uplift
capacity of an equivalent pier. For pile groups in sand, the uplift capacity of the equivalent pier is
computed from the weight of soil assuming a load distribution of 1:4 (horizontal:vertical) from the base of
the piles. For pile groups in clay, the uplift capacity of the equivalent pier is computed from shear strength
along the sides of the pile group and the weight of the block (without load distribution).

The AASHTO equivalent pier analyses are rational for pile groups in either compression or uplift, but not
both at the same time, as is the case for pile groups subject predominantly to overturning moments. A
more rational approach for pile groups with large overturning moments is to determine the compression or
tension load on each pile and then design the piles accordingly. The pile loads can be predicted from the
applied loading and pile group configuration using stiffness-based methods implemented with computer
software such as Ensoft GROUP. An example of such an approach is presented in Appendix A for
WisDOT sign structure S-05-168. The design engineer used Pile Group Analysis, a computer program
developed by Digital Canal, to predict axial forces in a four-pile group and an eight-pile group before
proceeding with structural design of the pile caps.

Methods that predict individual pile loads for each pile in the group result in designs that are controlled
geotechnically by uplift capacity. Uplift capacity of an individual pile is less than compression capacity,
and for most cases of wind loading (i.e. those in which the wind direction is not prescribed), the designer
must assume any of the piles in the group could be subject to either uplift or compression. In addition, the
strength limit resistance factors for piles subject to uplift are less than those for compression as listed in
Sec. 10.5.5 of the Bridge Manual (AASHTO, 2014). Without a load test, the resistance factors for single
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piles in uplift range from 0.2 to 0.4. Application of such low values to the design of pile groups subject to
overturning may be inappropriate since the failure of such groups is ductile. This is discussed further in
Chapter 6.

Lastly, the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and
Traffic Signals (2001) was consulted. Section 13 of the Specifications addresses foundation design. The
Specifications reference the AASHTO Bridge Specifications (e.g. AASHTO, 2014) as the primary basis for
foundation design. For drilled shafts, the Specifications’ commentary presents design information based
on Broms’ methods for laterally loaded deep foundations, but there is no design information related to pile
groups other than a brief paragraph regarding the use of piles for otherwise unacceptable soil conditions
and another reference to the AASHTO Bridge Manual for design purposes.

An LRFD version of the AASHTO Specifications for Highway Signs is forthcoming. The reliability study
conducted to develop the load and resistance factors for the new document is described in NCHRP
Report 796 (2014). The updated document is not anticipated to provide any new geotechnical design
guidance for pile groups used to support sign foundations. However, the document is anticipated to
provide more clarity on appropriate resistance factors for wind loading, likely indicating the 3-second, 90
mph wind loading can be considered an “extreme event” associated with greater resistance factors than
those discussed above (0.2 to 0.4).

2.2 Other Studies Relevant to Pile Groups Subject to Overturning

Most of the previous research that resulted from the literature search was relevant only peripherally; none
specifically addressed pile groups subjected primarily to overturning. Nevertheless, some significant
findings pertinent to this project were encountered:

e In NCHRP Report 461 (2001), Brown et al. investigated lateral loading of pile groups with load
tests and numerical models. The authors confirmed the p-y model is appropriate for pile groups
and summarized observed p-multipliers from their load test program and others. The small
number of piles (4) and large spacing (7 pile diameters) for this project (Chapter 3) make it likely
that group/spacing effects for lateral load response (i.e. p-y curves) are negligible. The authors
found that pile cap rotation was sensitive to the axial pile response (i.e. t-z), especially for fixed
head conditions. The authors also reported that strain gage pairs worked well for measuring pile
structural response, though they experienced some difficulty for steel pipe piles. The
ShapeArrayAccel devices used for this project (Chapter 3) were intended to overcome some of
these difficulties.

e Lehane et al. (2014) conducted centrifuge testing and finite element modeling of large overturning
loads on single piles and on single piles embedded in a footing. The piles embedded in a footing
had greater rotational stiffness and moment capacity than the individual piles with no footing. The
footing reduced moments applied to the individual piles, and the authors report the structural
capacity of the piles would control “typical configurations.” The authors discuss the significant
contribution of footing bearing pressures. Bearing of the pile caps for this project would only
confound the interpretation of load transfer among the piles in the pile groups, so the pile cap
structures will be constructed with a small gap between the bottom of the caps and the ground
surface. This is discussed further in Chapter 3.

e Rollins et al. (2003) performed full-scale lateral load tests of pile groups and developed design
curves that assign p-multipliers for pile rows as a function of spacing. For the first and second
rows of piles, there is no reduction (i.e. p-multiplier is 1.0) for pile spacing greater than 7
diameters. The same study also included cyclic lateral load tests of single piles. The tests were
deflection-controlled, with loads maintained for approximately 3 minutes on the first cycle and 10
to 20 minutes on subsequent cycles (up to 15). The authors report an approximately 15 percent
reduction in peak lateral resistance as determined by the pile head load-displacement curve, with
most of the reduction occurring in the first three cycles. The 15 percent reduction in peak lateral
resistance is likely tolerable, but the authors also reported a significant loss of stiffness for
subsequent cycles, which is explained by the gap left after unloading a previous load cycle.

3
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In a study of pile cap connections, Rollins and Stenlund (2010) measured deflections and
rotations of 12.75-in. diameter steel pipe piles embedded in pile caps subjected to lateral loading.
The pile heads were best modeled as fixed (rather than pinned), even when the piles were only
embedded 6 in. The authors recommended assuming similar pile to pile cap connections are
fixed and suggested truly pinned connections are difficult to create.
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3. Field Testing Program

As documented in the previous chapter, literature regarding overturning of pile groups is limited. The
project therefore focused on performing a full-scale lateral load test of pile groups similar to those
frequently used by WisDOT. The primary focus of the load test was to measure the response of pile
groups to static overturning applied via an elevated lateral load. Two four-pile groups were tested, one
with 10-in. diameter cast-in-place (CIP) piles and the other with 10x42 H-piles. The CIP piles are
constructed by driving closed-ended pipe piles before filling the pipes with concrete. This chapter
presents details of the load test site, design and construction of the pile groups, instrumentation, and
testing procedure.

3.1 Load Test Site

The load test site is located near the city of Warrensburg, in west-central Missouri approximately 60 miles
east of Kansas City as shown in Figure 3.1. The site was selected because previous research at the site
for the Missouri Department of Transportation (MoDOT) involved extensive lab testing of soil and rock as
well as axial and lateral load tests of drilled shafts, so the site is rather well characterized (Pierce et al.
2014; Boeckmann et al., 2014a). The test pile groups were constructed in the right-of-way for U.S.
Highway 50, near the intersection of Missouri Highway 13 and State Highway HH, as shown in Figure 3.2.

Figure 3.1. Location of Warrensburg Load Test Site. (Google Earth, 2011a)
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Figure 3.2. Location of Warrensburg Load Test Site east of Warrensburg, MO on U.S. Highway 50,
near the intersection with State Highway HH. (Google Earth, 2011b)

The site is composed of approximately 15 ft of silty clay overburden soil overlying shale formations with
highly variable strength along with sporadic sandstone. The bedrock consists of the Pennsylvanian
Croweburg and Fleming formations containing sandstone, siltstone, limestone, and coal beds. The
Croweburg formation had a UCS ranging from 3 to 80 ksf while UCS for the Fleming formation ranged from
5 to 240 ksf. The Croweburg formation had equivalent Standard Penetration Test (SPT) N-values ranging
from 93 to 122 blows/ft while equivalent N-values for the Fleming formation ranged from 122 to 304
blows/ft. Figure 3.3 presents UCS measurements from the site along with the mean and standard
deviation of UCS for each layer.

Figure 3.3. Measured values of UCS shown with mean and standard deviation values for
Warrensburg Load Test Site.
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3.2 Design of Pile Groups

The pile group design involved selecting pile lengths using analyses with Ensoft GROUP and considering
the objectives and constraints of the test program. The objective of the load test was to load the pile
groups to geotechnical failure by applying an elevated lateral load so that the primary loading was an
overturning moment like those applied to sign foundations. The layout of the four-pile groups was given
by WisDOT as the typical configuration shown in Figure 3.4. The research team decided to use a stem
structure atop pile caps as shown schematically in Figure 3.5. The design resembles typical sign
structures used by WisDOT. The stem was “truncated” at 10 ft (whereas a typical sign structure might be
closer to 30 ft) to reduce construction costs and to limit the height of load application to a practical level.
One constraint on the objective geotechnical failure was that the piles should display fixity at depth, i.e.
the piles should be long enough to prevent their rigid body rotation.

Figure 3.4. Typical pile group plan for WisDOT sign foundation. Primary direction of loading is
along the longitudinal axis of the pile cap (i.e. “upward” in the figure).
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Figure 3.5. Schematic elevation view of loading mechanism.

After the preliminary details of the pile group structures were established, Ensoft GROUP v8.0 (Reese et
al., 2010) was used to analyze different pile lengths and depths to shale. The analyses were evaluated to
determine how well different configurations met the load test objectives (i.e. intended geotechnical failure
mechanism) and the magnitude of the required load to achieve failure. Soil and rock inputs for the
GROUP model were derived from previous load tests of drilled shafts at the load test site as summarized
in Table 3.1. The axial load — displacement curves for the pile head were calculated using the alpha
method with a = 0.5 for soll, the results of axial load tests at the site for shale (Vu, 2013), and assuming
the hyperbolic load-displacement curve function reported by Vu (2013). The p-y curves for lateral load
analyses were those reported by Boeckmann et al. (2014a).

Table 3.1. Parameters used to develop GROUP model inputs for soil and rock.

Lateral Load Parameters

k
P = Pur (1 — exp (— 22 y))
pult

ucs fs_ z Puit Kkpy
Layer s-ult
y ksf Kips/ft2 ft Kips/in. kips/in.2
2 2.68 1.69
. 1.1 5 2.88 2.54
Silty Cl 4.45
ity L1ay (from o, = 0.5) 10 2.87 5.91
12 2.67 9.69
47 16 2.61 331
(average from Vu 20 2.76 576
Sandy Shale 15 (2013) forshale 22 249 800

For all preliminary models, the geotechnical failure predicted using GROUP involved failing the tension
piles, labeled 3 and 4 in Figure 3.5, in uplift. Uplift of the piles is characterized by the axial load
displacement curves for the tension piles, which result directly from the parameters described above and
which are shown in the GROUP output of Figure 3.6. The uplift capacity for H-piles and CIP piles driven

8
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equivalently were predicted to be approximately equal since they have similar surface and cross-sectional
areas. The research team decided to drive piles 1 ft into shale, which is sufficient to establish fixity as
shown in the bending moment profile of Figure 3.7 but not so deep as to substantially risk an inability to
fail the pile groups during the load test. Depth of shale at the load test site is variable but is generally
between 10 and 15 ft. The GROUP model predicted failure of the pile groups at about 95 kips of load
applied 9 ft above the ground surface.

Figure 3.6. Axial load displacement curve for tension piles.

Moment (lbs-in)
-8E5 -6E5 -4E5 -2E5 0
= =

50
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Figure 3.7. Bending moment predicted by GROUP model for the ultimate applied elevated load of
95 kips. For the GROUP model, Pile #1 is compression and Pile #2 is tension. Bending moment
profiles are nearly equivalent for compression and tension piles, so the lines shown are
indistinguishable.
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The resulting design was laid out in the construction plans included as Appendix B. Structural details of
the pile caps and stems were designed after determining the pile lengths and loading configuration. Plans
for previous WisDOT sign projects were consulted and structural calculations were performed. The
structural design was conservative by typical project standards in order to prevent failure of structural
components prior to geotechnical failure of the piles.

3.3 Construction of Pile Groups

Boone Construction Co. of Columbia, Missouri completed construction of the pile groups June 2 through
6, 2014. The crew spent one day installing the CIP piles, one day driving H-piles, and one day each on
the concrete caps and stems. Work was rained out Thursday, June 5. Pile driving logs are included as
Appendix C, and photographs and descriptions of construction are included in this section.

The first task undertaken by the construction crew was to clear grass and level the work surface. The
level work surface was particularly important since the two caps would be pulled together through a
common bar. Once grading was completed, the pile locations were laid out using a wood template (Figure
3.8). A crane-supported ICE-32S hammer with a rated energy of 26,000 ft-lbs was used to drive the piles
(Figure 3.9). The stroke of the hammer’s 3,000-Ib ram was monitored by observing rings on the ram
(Figure 3.11). Penetration during pile driving was monitored by counting hammer blows per 1-ft segment
of driving (Figure 3.10), observed with marks on piles (Figure 3.12). When the piles began to penetrate
shale, indicated by increased hammer stroke and reduced penetration, the crew marked pile penetration
every 5 blows (e.g. Figure 3.13, Figure 3.14) and terminated driving when the penetration in 5 blows was
2 in. or less. The final logs of pile driving are included as Appendix C. A plot of penetration versus depth
for all piles is shown in Figure 3.15. The final penetration of all piles was between 14 and 15.5 ft. Pile
driving was similar for all piles, though the penetration into shale was slightly more abrupt for the H-piles
than the CIP piles. Pile capacities (in compression) predicted by the ENR formula were generally around
40 to 50 tons.

Figure 3.8. Crew places template for piles on level work surface.
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Figure 3.9. Crane and hammer leads used for pile driving.
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Figure 3.10. Crew monitoring pile driving.
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Figure 3.11. Hammer stroke was monitored using rings on ram.

Figure 3.12. 1-ft intervals marked on piles.
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Figure 3.13. Crew marked piles every 5 blows once the piles began penetrating shale. Pile driving
was terminated when the piles penetrated 2 in. or less in 5 blows.

14
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Figure 3.14. Measured final pile penetration after driving.

Figure 3.15. Pile penetration for all piles. Last point for each log is extrapolated based on
observed penetration for last partial foot of driving.

15



Performance of Pile Supported Sign Structures FINAL REPORT January 2015

After driving, extra pile lengths beyond that needed for embedment in the pile cap were removed by
torching (Figure 3.16). After removing extra length from the CIP piles, a 1-in. diameter instrumented pipe
was placed in the center of the pipe pile (Figure 3.17) before filling the CIP with concrete (Figure 3.18). As
discussed in a subsequent section, the small pipes were instrumented with strain gages to measure the
structural response of the CIP piles, and the small pipe also served as housing for the ShapeArrayAccel
(SAA) devices during the test. Centralizers donated by C&M Manufacturing Co. were used to keep the
instrumented bars in the center of the CIP pipes. The concrete truck’s chute struck the top of the
instrumented bar for CIP-1 (Figure 3.19), so the top two gages for that pile were not operational during
the load test. The last step of the pile driving process prior to forming the caps was to place approximately
4 in. of sand at the ground surface as the base for the pile caps. The sand was removed after
construction of caps, leaving a gap between the ground surface and the bottom of the pile caps. The gap
was intended to remove the effect of the pile cap bearing on the ground surface during overturning, which
would be difficult to quantify and would therefore confound interpretation of the axial loads that developed
in the piles. Photographs of the pile groups prior to placing sand and forming caps are shown in Figure
3.20 (CIP piles) and Figure 3.21 (H-piles).

Figure 3.16. Marking pile lengths to be removed. (H-Piles were delivered in various lengths;
variation in stickup shown is not an indication of variation in penetration.)
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Figure 3.17. Placing instrumented pipe into CIP pile.
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Figure 3.18. Placing concrete in CIP-2.

Figure 3.19. Damaged bar for CIP-1.
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Figure 3.20. CIP Pile group after driving, prior to placement of sand.

Figure 3.21. H-pile group after driving, prior to placement of sand.

After two days of pile driving and instrumentation work, the remainder of the construction week involved
concrete work. Results of concrete slump (ASTM C143, 2012) and concrete compression strength tests
(ASTM C39, 2014) are presented in Table 3.2. The sand was leveled (Figure 3.22) prior to placing the
forms for the pile caps, which were assembled away from the caps and lifted into place. Steel rebar for
the caps was tied in place in accordance with the construction plans after the forms were in place (Figure
3.23), and steel rebar for the stem structures was tied into the cap steel (Figure 3.24, Figure 3.25) prior to
placing concrete for the pile caps. Concrete for both pile caps was placed in one day (Figure 3.26).
Meanwhile, the university research team performed concrete slump tests in accordance with ASTM C143
(2012) (Figure 3.27). The construction crew finished concrete on the cap (Figure 3.28), including the
beveled keyway at the joint with the stem structure (Figure 3.29), before the cap concrete was allowed to
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set for two days. Rain delayed progress the first day, but the stems were formed (Figure 3.30) and
concrete placed (Figure 3.31) on the second day. Completed cap structures after blowing out sand to
create the gap between pile cap and ground surface (Figure 3.32) are shown in the photograph of Figure
3.33. As described previously in this section, the gap between the bottom of the pile caps and the ground
surface was intended to prevent the caps from bearing on the ground surface during loading. Load
transfer by bearing would have been difficult to quantify and would have made test results difficult to
interpret.

Table 3.2. Results of concrete testing.

Structural Placement  Slump, Date of Age. davs Compressive Comments
Component Date in. Test ge, day Strength, psi
CIP-4 (Pile) 6/2/2014 9.5 6/13/2014 11 1237 High slump mix used for constructability
CIP-2 (Pile) 6/2/12014 9.5 6/16/2014 14 1505 in instrumented piles.
H-Pile Cap 6/4/2014 6.0 6/13/2014 9 4083
H-Pile Cap 6/4/2014 6.0 6/16/2014 12 4643
CIP Cap 6/4/2014 55 6/16/2014 12 4163
HP Stem 6/6/2014 6.5 6/16/2014 10 3487
CIP Stem 6/6/2014 7.0 6/13/2014 7 3057
CIP Stem 6/6/2014 7.0 6/16/2014 10 3845

Figure 3.22. Crew levels sand prior to placing forms for pile cap.
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Figure 3.23. Forms and cage in place for H-pile cap prior to placing concrete.

Figure 3.24. H-pile cap and stem cages formed together prior to placing concrete for the pile caps.
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Figure 3.25. Stem cage formed with pile cap cage prior to placement of concrete for pile cap.

Figure 3.26. Placing concrete for H-pile cap.
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Figure 3.27. Performing slump test in accordance with ASTM C143 (2012) on concrete from each
pour.

Figure 3.28. Finishing concrete for pile cap.
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Figure 3.29. Finished concrete for pile cap with beveled keyway at joint between cap and stem.

Figure 3.30. Forming stems. Pipes for threadbar load application are in place.
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Figure 3.31. Placing concrete for stems.

Figure 3.32. Removing sand from beneath pile cap to create a gap between cap and ground
surface. The gap prevents the cap from bearing on the ground surface during the application of
overturning loads.

25



Performance of Pile Supported Sign Structures FINAL REPORT January 2015

Figure 3.33. Completed pile cap-stem structures.
3.4 Instrumentation and Data Acquisition

All 8 piles were instrumented with vibrating wire strain gages to measure strain at discrete elevations.
One pile per group was instrumented with a ShapeAccelArray (SAA) to measure deflection along the pile
length. Movements of the pile caps were monitored using linear voltage displacement transducers
(LVDTs), dial gages, and wireline devices. In addition, the load applied to the shafts was measured by
monitoring the hydraulic pressure supplied to the jacks. Each instrument and the associated data
acquisition (DAQ) system are described in more detail in the sections that follow.

3.4.1  H-Pile Strain Gages

Eight Geokon Model 4000 arc-weldable vibrating wire strain gages (Geokon, 2013a) were applied to each
H-pile (32 total). As shown in Figure 3.34, four gages were welded on the inside flanges 6 in. below the
top of the each pile to define the axial load and bending moment at the pile head. Prior to driving, the
other four gages per pile were placed in pairs on opposite sides of the pile web, with one pair 3 ft below
the estimated ground surface and the other 1 ft above the pile tip. The pair at 3-ft was intended to capture
the maximum bending moment (Figure 3.7). The tip gages were intended to measure the load transferred
to the bottom of the pile. An installed tip gage is shown in Figure 3.35, and angle iron welded to protect
the gages during driving is shown in Figure 3.36. Despite the angle iron protection, several of the below
ground gages were out of range during testing, likely because the gages were not properly adjusted to
mid-range prior to driving.

Because 32 vibrating wire strain gages were applied to CIP piles as well (Section 3.4.2), it was required
to record measurements from 64 vibrating wire devices among the other instrumentation/DAQ needs. To
help with the high DAQ demand, the vibrating wire DAQ developed by Luna (2014) for the Missouri
Department of Transportation shown in Figure 3.37 was borrowed. It was capable of reading and
recording 16 gages at one time, so half of the H-pile gages were read at one time before switching to the
other half of the gages for each load step during testing. Further details of the H-pile strain gage DAQ are
provided in Luna (2014). (A different DAQ was used for the CIP pile gages.) The testing procedure is
described in Section 3.5.
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Figure 3.34. Welding Geokon 4000 gages to pile head after driving.

Figure 3.35. Installed Geokon 4000 gage at pile tip.
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Figure 3.36. Welding angle section above installed gages. Gage cables were wrapped in aluminum
foil to protect from heat.

Figure 3.37. DAQ used to read Geokon 4000 gages (Luna, 2014).
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3.4.2 CIP Pile Strain Gages

As described in Section 3.3, strain gages for the CIP piles were attached to 1-in. diameter steel pipes that
were inserted in the CIP piles between driving and filling with concrete (Figure 3.17). Eight Geokon spot-
weldable vibrating wire strain gages (Model 4150) (Geokon, 2013b) were applied to each instrumented
pipe (32 total). The gages were installed in pairs along the length of the pipes so that axial load and
bending moment profiles along the length of the CIP pile could be measured. Each of the four pipes
consisted of two segments, the lengths of which were adjusted in the field after driving to position the
gage depths appropriately. The gages were installed according to manufacturer instructions in a
laboratory as shown in Figure 3.38 prior to transporting the pipes to the field for installation. Similar to the
H-pile gages, DAQ presented a challenge because of the large number of gages. A Geokon datalogger
Model LC-2x16 capable of recording 16 gages was used during the test, so one half of the gages were
recorded at one time before switching over to the other half for each load step (see Section 3.5for testing
details). Photographs of the datalogger are shown in Figure 3.39.

Figure 3.38. Spot welding Geokon 4150 gage to instrumented pipe. Completed gage with
protective cover can be seen on bottom of pipe.

Figure 3.39. Geokon datalogger LC-2x16 in lab (left) and field (right).
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3.4.3 Shape Array Accelerometer

ShapeAccelArray (SAA) devices were used to measure shaft deflection profiles in lieu of conventional
inclinometers. The SAA is a chain of rigid segments with sensors that use MEMS
(microelectromechanical systems) technology to measure the tilt of each segment/joint (Measurand,
2012). The sensorized segment and joint are shown in Figure 3.40. The measuring principle of the SAA is
similar to that of traditional inclinometers, and both provide excellent precision and accuracy, but the SAA
provides a continuous record of shaft deflection throughout testing. This presents safety, reliability, and
time advantages compared with taking manual readings with the conventional inclinometers at the end of
each load step.

The university owns two SAA devices. As shown in Figure 3.41, one SAA was used for HP-2, a
compression pile, and one was used for CIP-3, a tension pile. The SAA were placed in 1-in. Schedule 40
metal pipe. For the H-pile, the pipe were welded to the inside corner of the pile section prior to driving. For
the CIP pile, the pipe was inserted in the center of the pile using centralizers prior to placing concrete. (As
described previously, the CIP inner pipe was also instrumented with strain gages.) SAA data were
recorded continuously using the SAA software program, which ran on a laptop computer to which the
SAA were connected.

SAA Joint

/ SAA Segments

Figure 3.40. SAA joint and segment.
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Figure 3.41. SAA inserted in HP-2 and CIP-3.
3.4.4 Linear Voltage Displacement Transducers (LVDTSs)

LVDTs supplied by Bridge Diagnostics, Inc. were used to measure displacement of the pile cap. Eight
were used: two above the top rear corners of each cap to measure pile cap uplift and two in front of each
pile cap to measure the lateral deflection of the caps. The uplift LVDTs are shown in Figure 3.42, and the
lateral LVDTs are shown in Figure 3.43. The lateral LVDTs were mounted with one above the other on
each cap to allow for interpretation of pile cap rotation. Reference beams can also be seen in the
photographs and in Figure 3.44. The reference beams were fabricated from timber 4x4 segments and
mounted on cinder block towers approximately 10 ft from the pile caps. Care was taken during installation
of the LVDTs to ensure verticality (Figure 3.45). A 10-V power supply was used to operate the LVDTs,
which were read with a digital multimeter and recorded manually.

Figure 3.42. LVDTs positioned above rear of pile caps to measure uplift.
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Figure 3.43. LVDTs positioned against front of pile caps to measure lateral deflection. One LVDT
was mounted directly above the other to measure rotation.

Figure 3.44. Four reference beams used during the test.
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Figure 3.45. Installation of uplift LVDT.

3.4.5 Dial Gages

One dial gage was mounted above the center of the back of each pile cap as shown in Figure 3.46 (two
total). The dial gages provided a degree of redundancy for the uplift LVDTs. Dial gage measurements

were recorded manually during testing.

Figure 3.46. Dial gages used to measure uplift at the back of the pile cap.
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3.4.6  Wireline Devices

Eight wireline devices were installed to measure the vertical movement of the pile cap at each pile
location. In addition, four wireline devices were installed to measure lateral movement of the back
(tension edge) of the pile caps. Wireline devices are shown in Figure 3.47. The device consists of a mirror
and ruler attached to the pile cap with a tensioned wire (fashioned from rebar tie wire) in front of the
mirror/rulers. The wire is tensioned between two posts driven away from the pile caps. The devices were
read by lining up the wire and mirror such that the wire and its reflected image coincided, ensuring
consistent readings. The mirror/rulers were installed to ensure verticality as shown in Figure 3.48.

Figure 3.47. Wireline devices on the CIP pile group. Devices were installed in line with
compression (left) and tension (right) piles.

Figure 3.48. Installing wireline device.
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3.4.7 Load Measurements

The load applied to the pile structures was measured from the hydraulic pressure applied to the jack
(Figure 3.49) by the pump (Figure 3.50). This pressure can be converted to a force via a simple
calibration provided for the jack (0.037 kip/psi). Pressure readings were recorded manually for each load
step. The pressure gage was marked in 100 psi increments.

Figure 3.49. Hydraulic jack on threadbar applying load to pile structure through a bearing
plate.
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Figure 3.50. Hydraulic pump with pressure gage.
3.5 Testing Procedure and Load Test Summary

The test was performed by pulling the two pile groups together so that both were loaded and monitored
simultaneously, producing two sets of test results for one individual lateral load test. The load test setup is
shown in Figure 3.51 and Figure 3.52. The center-hole jack (110 MP series 01) was provided by
Dywidag-Systems International (DSI) and were used to tension Grade 150 steel THREADBAR®, also
supplied by DSI. The bar was installed through 6-in. diameter steel pipes that were cast into each stem as
shown in Figure 3.30. Application of pressure to the jacks tensioned the bar, thereby pulling together the
pile structures.

Figure 3.51. View of load test with CIP pile group on left and H-pile group on right. Canopy
housing computers and DAQs is in background.
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Figure 3.52. View of load test with H-pile group on left and CIP pile group on right.

The lateral load test was performed similar to the procedure outlined in ASTM D3966 (2007), which was
written for single foundation elements rather than groups. The load sequence generally followed
Procedure B for Static Excess Loading. Loads were applied using the hydraulic system provided by DSI
following the provided operating instructions including preparation, bleeding the jack, and stressing. As
shown in Figure 3.53, the jack was reset several times during the test when its stroke had been
consumed by displacement of the structures and elongation of the bar. During resetting of the jacks, the
load was locked into the loading frame by tightening locking nuts housed within the neck of the centerhole
jacks against the bearing plates. During each load step, a near constant pressure was maintained until
several consecutive dial gage readings, taken in one-minute increments, were unchanged. At that point,
the strain gage cables were switched and several readings were taken with the second set of strain
gages (see Section 3.4.1 and 3.4.2) before proceeding to the next load increment. Longer load
increments were required for higher loads, during which the pump was operated frequently to maintain a
constant pressure as the pile structures displaced.

Figure 3.53. Resetting stroke of the hydraulic jack during the load test.
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Initial base readings for all of the instrumentation were recorded prior to loading. Readings from the dial
gages and wireline devices were recorded manually and frequently throughout each load step to inform
loading decisions. The LVDTs were also recorded manually, but only at the end of each load step. The
SAA data were recorded continuously. Readings for all instruments were also recorded during unloading
at the end of the test. The LVDTSs, wireline devices, and dial gages were monitored to ensure they did not
run out of stroke during loading. Due to the amount of displacement, this required resetting several
reference beams during loading.

The test was terminated when the load on the structures was 99 kips. Pictures of the pile structures near
the end of the test are shown in Figure 3.54 through Figure 3.57. The final load was rather difficult to
maintain as the movement of the structures was considerable, with uplift at the tension piles between 1
and 2 in. and displacement of the top of the structures of approximately 10 in. on average (as measured
using a tape stretched atop the structures). The load was released as darkness set in, but it was apparent
from the persistent rotation of the structures the final load was ultimate or nearly ultimate. The gap
between pile caps and ground surface was maintained throughout the test, as shown in the pictures.

Figure 3.54. Pile structures during final load step. CIP pile cap is at left and H-pile cap is at right.

Figure 3.55. Pile structures during final load step. H-pile cap is at left and CIP pile cap is at right.
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Figure 3.56. H-pile cap during the final load step.

Figure 3.57. CIP pile cap during the final load step.
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4. Experimental Results

After the test was completed, pile responses were calculated from the load test measurements. The pile
response is characterized by the final displacements and rotations, load-displacement behavior, and the
bending moment and axial force along the length of the pile. This chapter presents applied load-
displacement curves as measured by LVDTs, dial gages, wireline devices, and the SAA segment at the
top of the shaft and pile displacement profiles derived from SAA measurements. A summary of the
methodology for interpreting bending moments from strain gage and SAA data is also presented along
with bending moments and axial forces derived from strain gage measurements and bending moments
derived from SAA data.

4.1 Displacements, Rotations, and Load-Displacement Curves

As described in Sections 3.4.4 through 3.4.6, twenty two instruments were used to measure
displacements of the pile structures. Ten instruments were used to measure upward displacement of the
tension piles (HP-3, HP-4, CIP-3, CIP-4): two LVDTs and one dial gage on the back (tension side) of the
caps, and one wireline device per tension pile (placed on the outside of the cap in line with the respective
pile head). To measure downward displacement of the compression piles (HP-1, HP-2, CIP-1, CIP-2),
four wireline devices (one per compression pile) were installed on the outside of the cap in line with the
respective pile head. Eight instruments were used to measure lateral displacement of the pile caps: two
LVDTs in the front of each pile cap and two wireline devices on the top of each pile cap at the tension
edge of the caps. The movement of the top segment of the SAA provides an additional measure of lateral
displacement for each cap.

A summary of displacements at the end of the maximum (99-kip) load step from each instrument is
included in Table 4.1. The measured displacements indicate the H-pile structure generally moved more at
the end of the test than the CIP pile structure, but both structures moved significantly. A potential
explanation for the greater displacement of the H-pile group is because the H-piles are oriented along
their weak axis (consistent with typical WisDOT plans for sign structures). The weak axis orientation not
only results in a primary bending moment of inertia less than that for the CIP piles, but it also means the
flanges of the H-piles were essentially “slicing” through the soil as the piles deflected laterally. For both
pile groups, upward displacement of the tension piles was several times greater than downward
displacement of the compression piles. Lateral displacements were greater than vertical displacements
for both caps. Lateral displacement was greater at the back (tension side) of the caps than at the front
(compression face) of the caps, which is consistent with observed rotation of the structures.

Table 4.1. Summary of displacements at end of final (99-kip) load step. For vertical displacements,
up is negative.

Final Displacement, in.

Instrument H-Pile  CIP Pile
Tension LVDT, Piles 1-4 -1.64 -1.40
Tension LVDT, Piles 2-3 -1.38 -1.39
Tension Dial Gage -1.49 -1.62
Tension Wireline, Pile 3 -2.07 -1.14
Tension Wireline, Pile 4 -1.97 -1.14
Compression Wireline, Pile 1 0.39 0.30
Compression Wireline, Pile 2 0.10 0.28
Lateral LVDT, Top 213 1.06
Lateral LVDT, Bottom 1.83 0.86
Lateral Wireline, Piles 1-4 3.05 1.75
Lateral Wireline, Piles 2-3 3.25 1.71

Various rotations were calculated using the displacements from Table 4.1. The resulting rotations at the
end of the final load step are included in Table 4.2. The calculated pitch rotations are the expected
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rotation of the structures in response to the applied overturning moment. The two values for the rotation
of the back half of the H-pile cap (-3.2 and —-1.6) are erroneous since the rotation of the H-pile cap was
clearly in the positive direction. The negative calculated values result from the wireline devices recording
greater upward displacement than the LVDTs on the back (tension) side of the H-pile caps. This is likely a
result of reference beam adjustment during the final load step. The other values for rotation are generally
consistent for each structure, indicating rotation of 1 to 3 degrees with slightly greater rotation of the H-
pile caps. The first two measures of rotation listed in the table (yaw and roll) represent rotation in
directions not anticipated based on the loading. The small values calculated confirm the structures were
not twisting significantly and provide a degree of confirmation in the precision of displacement
measurements. In general, the rotation values indicate reliable displacement measurements, especially
considering the sensitivity of rotation calculations of such small magnitude.

Table 4.2. Summary of rotations at end of final (99-kip) load step. For pitch values, rotation toward
the opposite shaft (i.e. expected direction) is positive.

Rotation Description Final Rotation, deg. Instruments used in Calculation
H-Pile CIP Pile (numbers refer to pile designation)
Twist about vertical axis (yaw) -0.16 0.03 Lateral Wireline Devices
Twist about longitudinal axis (roll) 0.35 0.01 Tension LVDTs
Rotation of Pile 1-Pile 2 face (pitch) 1.8 1.3 Top LVDT to Bottom LVDT
Rotation of Pile 1-Pile 4 face (pitch) 1.9 1.1 Wireline 4 to Wireline 1
Rotation of Pile 3-Pile 2 face (pitch) 1.7 1.1 Wireline 3 to Wireline 2
Rotation of Pile 1-Pile 4 face (pitch) 1.4 1.2 Tension LVDT to Wireline 1
Rotation of Pile 3-Pile 2 face (pitch) 1.0 1.1 Tension LVDT to Wireline 2
Rotation of Pile 3-Pile 2 face, back half only (pitch) -3.2 1.2 Tension LVDT to Wireline 3
Rotation of Pile 1-Pile 4 face, back half only (pitch) -1.6 1.2 Tension LVDT to Wireline 4
Average rotation of cap (pitch) 24 1.5 Average Lateral Wireline to Top LVDT
Average rotation of cap (pitch) 2.2 1.5 Average Lateral Wireline to Bottom

Load-displacement curves were determined from the measurements of each displacement instrument.
Curves from the devices associated with tension piles (LVDTs and dial gages on the back of the pile
caps; wireline devices associated with HP-3, HP-4, CIP-3, and CIP-4) are shown in Figure 4.1. The load-
displacement curves for tension piles are similar, with the exception of curves derived from the dial gage
on the CIP pile cap, the initial readings of which were affected by wind. All of the load-displacement
curves are rather stiff initially, with more significant displacements occurring after the applied load
exceeded approximately 50 kips. Beyond about 85 kips applied load, it appears the capacity of the
tension piles had been reached. It is also noteworthy that in the final load step, it appears the H-pile cap’s
tension piles continued to pull out while the CIP pile cap’s tension piles experienced an apparent
stiffening. This is perhaps the result of not reaching static equilibrium during the final load step (i.e. the
piles were still moving and the applied load was not maintained consistently at 99 kips).

Displacement devices associated with compression piles (HP-1, HP-2, CIP-1, CIP-2) were limited to
wireline devices. Load-displacement curves from these devices are shown in Figure 4.2. The scale of the
displacement axis compared to that for the tension piles in Figure 4.1 is consistent with the observation
that upward movement of the tension piles was several times greater than downward movement of the
compression piles. The curves display noise and some variability, neither of which is surprising
considering the difficulty of measuring small displacements and the precision of the wireline devices. The
general shape of the curves is similar to that for the tension piles in displaying high initial stiffness and
then greater displacement after about 60 kips applied load.
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Figure 4.1. Load-displacement curves associated with tension piles. Solid symbols are for H-piles
and open symbols are for CIP piles. Dashed lines are for wireline devices.

Figure 4.2. Load-displacement curves associated with compression piles. Solid symbols are for H-
piles and open symbols are for CIP piles. Dashed lines are for wireline devices.
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Load-displacement curves associated with lateral movement of the pile structures are included in Figure
4.3. Included are one curve from the top segment of the SAA for each pile cap. Several observations from
the graph are consistent with those discussed regarding Table 4.1 and Table 4.2: the H-pile structure
experienced greater displacement than the CIP-pile cap, and the back (tension) side of each cap
displaced more laterally than the front (compression) side, which is consistent with the observed rotation
of the structures. The lateral load-displacement curves are consistent. This is consistent with the
observed response of drilled shafts in Boeckmann et al. (2014a), which cited the “averaging” nature of
laterally loading deep foundations. Finally, it appears the H-pile cap’s piles continued to displace laterally
while the CIP pile cap’s tension piles experienced an apparent stiffening in the final load step. This is
similar to the observed load-displacement behavior for the tension piles and is also likely the result of not
reaching static equilibrium during the final load step.

Figure 4.3. Load-displacement curves associated with lateral movement of the pile structures.
Solid symbols are for the H-pile structure and open symbols are for the CIP pile structure. Dashed
lines are for wireline devices.

4.2 Displacement Profiles from SAA

The SAAs used in piles HP-2 and CIP-3 consist of a chain of 30 segments, each 500 mm (19.7 in.) in
length. Position data for each segment were recorded in three dimensions, with the cross section of the
pile defining the horizontal x and y axes and the vertical z axis. Lateral displacement values at the end of
each load increment were calculated from the differential movement in the x and y directions:

8 = (i — xi0)? + (Vi — Yi0)? (consistent units of length)  Eq. 4.1
where §; = total lateral displacement of the i*" segment of the SAA
x; = position of the i*" segment along the x-axis
x; = initial (zero load) position of the it" segment along the x-axis
y; = position of the i*" segment along the y-axis
yio= Initial (zero load) position of the it"* segment along the y-axis
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This calculation is necessary since the direction in which the piles were pulled was aligned somewhere
between the x and y axes. Presumably, the total displacement occurred toward the opposing test
structure. Profiles of displacement with depth for each load step were calculated according to Eq. 4.1 for
both instrumented piles. The results are included in Figure 4.4, with all profiles for one pile contained in
the same plot and with plots from the two pile groups presented side-by-side.

Figure 4.4. Displacement profiles from SAA data for piles (a) HP-2 and (b) CIP-3.

The magnitudes of the deflection profiles of Figure 4.4 are consistent with observations in Section 4.1,
primarily in that the H-pile cap deflected considerably more than the CIP pile cap, and the difference was
especially pronounced for the final two load steps. The shapes of the deflection profiles are reasonable
and are generally consistent from one load step to the next for both piles. The shapes also indicate the
test objective of maintaining fixity above the pile tip was achieved for both piles. Neither pile displayed
much (if any) rebound after unloading, which is unlike typical single-pile behavior. It is possible the
considerable weight of the pile structures (47 kips each) prevented significant rebound.

4.3 Methodology for Interpretation of Axial Force and Bending Moment

Determining pile structural response from strain gage and SAA data requires interpretation using
geometry and structural mechanics of varying complexity depending on the response (axial force or
bending moment) and pile type. The SAA devices do not measure elongation, so they provide no axial
data. Calculations for axial force from strain gages are relatively simple for both types of piles, since the
axial strain is assumed to be the average strain measured along the cross-section for any depth. The
axial force calculations included the dead load from the weight of the structures, which was assumed to
be distributed equally among the four piles. The dead load from the weight of the structures had to be
added because the initial strain measurements were recorded after concrete for the structures had been
placed and sand beneath the pile caps had been removed.
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P; = &j_qxia1 * EAj + 11.7 Kips (consistent units) Eq. 4.2
where P = axial force at the level of the jt" strain gage
&j_axiar = average strain measured by the j*" level strain gages, compression
positive
EA; = pile axial stiffness at the j"* strain gage

11.7 kip= weight of structure divided by four piles

Calculating bending moments (Eq. 4.3) requires data related to bending curvature, which varies by
instrument, and bending stiffness, which varies by pile type. Two profiles of bending moment were
calculated along the length of piles HP-2 and CIP-3: one from the SAA data and the other from strain
gage data. For the other piles, only strain gage data were available.

M=¢-EI (consistent units) Eq. 4.3

where M = bending moment
¢ = bending curvature, radians per unit length
El = shaft bending stiffness

Bending curvature from SAA data was obtained by differentiating the displacement profiles described in
Section 4.2 twice, first to obtain cross-sectional rotation of the pile (Eq. 4.4), which is then differentiated to
obtain bending curvature (Eq. 4.5):

ds 1 (8i=6;_
6; = ~tan 1 (Tl) Eq. 4.4
where 6; = cross-sectional rotation of the it"* segment of the SAA, radians
L = SAA segment length (500 mm =19.7 in.)
_1_4d% _db  0iz6in
¢i_p_i_dzz_dz~ - Eq. 4.5

where ¢; = bending curvature of the i*" segment of the SAA, radians per unit length
Di radius of curvature of the it" segment of the SAA, consistent units of length
L SAA segment length (500 mm = 19.7 in.)

Bending curvature is equivalent to the slope of the strain across the cross-section. Calculating bending
curvature from strain gage data therefore depends on the pile geometry. For the CIP strain gages, which
were installed on opposite sides of the instrumented 1-in. pipe, and the H-pile strain gages below ground,
which were installed on opposite sides of the web, the bending curvature is simply the difference between
strain readings divided by the distance between gages. For the gage layout employed at the head of H-
piles, the difference between average flange strain readings was divided by the distance between these
gages.

Bending stiffness for the H-piles was assumed to be constant and was calculated from the weak-axis
moment of inertia and the elastic modulus of steel. Determining the bending stiffness of the CIP piles is a
nontrivial exercise, primarily because the stiffness is nonlinear and greatly influenced by concrete
cracking, which is difficult to predict. The procedure used here was to predict values of bending stiffness
along the length of the shaft as a function of the bending curvature. Values for bending stiffness as a
function of curvature were computed using Ensoft L-Pile v2012. The routine employed by L-Pile is
documented in the program’s technical manual (Isenhower & Wang, 2011). In summary, L-Pile iterates on
the location of the neutral axis until force equilibrium is satisfied, accounting for concrete cracking.
Cracking of the concrete is predicted as a function of the compressive strength of the concrete, which
was estimated from Table 3.2. The resulting pile bending stiffness predicted by L-Pile is shown in Figure
4.5. The bending stiffness decreases abruptly at small values of curvature, which corresponds to initial
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cracking of the concrete. After the concrete cracks, the decrease in stiffness is more gradual as the steel
yields.

Figure 4.5. Bending stiffness curve for CIP piles.

For all calculations, the bending stiffness at a particular depth was limited to its minimum historic value if
the L-Pile analysis indicated concrete cracking had ever occurred at that depth. For example, if the
curvature at a depth of 5 ft was great enough to initiate concrete cracking for an applied lateral load of 50
kips, the bending stiffness used to calculate the bending moment for subsequent loads would be limited
to a maximum value of the stiffness calculated for the 50-kip load, even if the bending curvature at a
subsequent load was less than it had been at the 50-kip load.

4.4 Pile Structural Response

The methodology and equations presented in Section 4.3 were used to create profiles of axial force and
bending moment with depth. Each of the profiles was calculated for each load step and each pile, and
results are presented and discussed in the sections below. Additional discussion and interpretation of the
results is presented in Chapter 5. As discussed previously, the two piles per structure that were
anticipated to be in compression (HP-1 and HP-2, CIP-1 and CIP-2) are referred to as “compression
piles” and the two piles per cap anticipated to be in tension (HP-3 and HP-4, CIP-3 and CIP-4) are
referred to as “tension piles.”

4.4.1  Axial Force Profiles

Strain gage data were analyzed to produce plots of axial force with depth for all CIP piles (Figure 4.6) and
H-piles (Figure 4.7). The calculations were performed according to Eq. 4.2, so the results include the
weight of the cap structure, which is assumed to be distributed equally among the piles. Only gages for
one compression pile and one tension pile from each cap (HP-2, HP-3, CIP-2 and CIP-3) were recorded
for the final load step (99 kips) and after unloading because maintaining the applied load was deemed
more important than reading all gages considering the time required for switching cable sets. One
limitation of the axial force data analysis was encountered for the gages installed at the pile head, where
it is very difficult to estimate the axial stiffness. The axial stiffness of the pile was used, but this ignores
the likely significant stiffness contribution from the pile cap, which results in axial load magnitudes that are
too low.

The shape of the axial load profiles for CIP piles (Figure 4.6) is generally consistent, with similar axial
loads measured in the two middle levels of gages within the soil and less load measured near the tip,
which was installed in the shale. This suggests load transfer within the soil zone was small and that the
piles developed most of their resistance in the shale. Further, it suggests the loads at the pile head,
where cap stiffness confounds interpretation, are likely not much greater than those calculated around 2 ft
below the ground surface. The axial load during the ultimate load step was around 50 kips, with CIP-4
being slightly less than the others.
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The axial force data for the H-piles is less informative due to installation issues encountered during
construction (Section 3.4.1). For several depths, one gage of the pair was not functional and the axial
strain was assumed to be equal to the strain in the lone operational gage. This ignores the effect of
bending and will thus tend to either overreport or underreport the actual axial force value. Nevertheless,
several meaningful observations can be derived from Figure 4.7. First, the calculated axial loads nearly all
follow the expected sign, i.e. compression was calculated for compression piles and tension was
calculated for tension piles. The axial force magnitudes generally decrease with depth, consistent with
load shedding to the soil. The magnitudes generally vary from very small (HP-1 and HP-4 though there
were no ultimate readings for those piles) to nearly 100 kips. The unexpected (compression) axial loads
observed at the end of the test for HP-3 could be a result of increased bending (making the axial force
more difficult to interpret with nonfunctioning gages) or of previously operational gages ceasing to
function upon greater stress and strain.

Figure 4.6. Axial force for (a) CIP-1, (b) CIP-2, (c) CIP-3, and (d) CIP-4. Compression forces are
positive. Weight of cap included per Eq. 4.2. Topmost gages in CIP-1 were damaged during
construction (Section 3.4.2).
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Figure 4.7. Axial force for (a) HP-1, (b) HP-2, (c) HP-3, and (d) HP-4. Compression forces are
positive. Weight of cap included per Eq. 4.2.

4.4.2 Bending Moment Profiles from Strain Gage Data

Bending moment profiles from strain gages for the CIP piles are shown in Figure 4.8. The bending
moment profiles for CIP-1, CIP-2, and CIP-3 are similar, irrespective of axial loading. All three indicate
single curvature with maximum bending moments around 50 Kip-ft. The bending moment data for CIP-4
are suspect; the data are inconsistent with the other three piles and, as for the axial forces from CIP-4,
the magnitudes are small. The data indicate there was some bending moment at the pile heads, which
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indicates the pile heads were restrained rotationally, probably to the point of fixity. Fixed pile heads are
consistent with the observations by Rollins and Stenlund (2010).

Also included in Figure 4.8 is the bending moment profile for CIP-3 from SAA data during the final load
step. The SAA bending moment profile is consistent with the respective profile from strain gage data,
lining up atop one another at the mid-pile strain gage levels and showing similar shapes and magnitudes
otherwise. The SAA profile has more data points, capturing a greater maximum value just below the
ground surface as well as a slightly different shape near the bottom of the pile. Similar agreement
between bending moments interpreted from SAA measurements and bending moments interpreted from
strain gage measurements was reported in a paper by Boeckmann et al. (2014b) on the topic.

Bending moment profiles for H-piles are shown in Figure 4.9. The bending moment profile from the SAA
data is included for HP-2. Most of the calculated bending moments from strain gage measurements were
near zero. The issues that made interpreting axial force data for the H-piles difficult are even more
problematic for calculations of bending moment, which require two readings of strain.
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Figure 4.8. Bending moments for (a) CIP-1, (b) CIP-2, (c¢) CIP-3, and (d) CIP-4. Bending moments
from SAA data are included for the final load step for CIP-3 for the sake of comparison.
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Figure 4.9. Bending moments for (a) HP-1, (b) HP-2, (c) HP-3, and (d) HP-4. Bending moments from
SAA data are included for the final load step for HP-2. Large symbols indicate locations of non-
functioning strain gages.
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4.4.3 Bending Moment Profiles from SAA Data

SAA displacement profiles were presented in Section 4.2, and bending moments derived from SAA data
for the final load step were discussed in Section 4.4.2. Additional interpretations from SAA data are
included in Figure 4.10 (CIP piles) and Figure 4.11 (H-piles). These figures include the displacement data
(same as Figure 4.4), cross-sectional rotation, bending moment, shear force, and unit lateral pressure.
The interpretation technique described in Section 4.3 was extended to calculate the shear force and unit
lateral pressure as the first and second derivatives, respectively, of bending moment.

The bending moment profiles are similar in shape and magnitude for both piles, with single-curvature
shapes and maximum observed bending moments slightly greater than 50 kip-ft. As was observed for
bending moments derived from strain gage measurements, the SAA bending moments calculated at the
pile head are too low because of the unaccounted for stiffness contribution of the pile cap.

The shear force and unit lateral pressure profiles for both piles are noisy to the point of not being useful.
This is consistent with the observation of some noise in the SAA bending moment profiles; the bending
moment noise was exacerbated upon further differentiation. Measurement limitations make it very difficult
to produce meaningful results for third and higher-order derivative quantities. The limitations of numerical
differentiation, which also apply to strain gage data, provide a large motivation for using computer models
such as those documented in Chapter 5 to further interpret the test results.
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5. Analysis of Experimental Results

Further analysis of the data presented in Chapter 4 was performed to model the results. Load-
displacement curves for axial and lateral loading are presented before interpreting the data in the context
of design based on static equilibrium. Further analysis was then pursued using numerical methods.

5.1 Comparison of Applied Test Load to “Typical” Sign Loading

At the end of the load test, the applied load was approximately 100 Kips, which corresponds to an applied
overturning moment of 900 kip-ft. These values are similar to the loads considered in the design example
documented in Appendix A, which includes two relatively long spans and relatively large sign faces. The
calculations for that large sign were performed in accordance with AASHTO’s 17th Edition bridge
specifications (AASHTO, 2002), which is based on allowable stress design. The calculations consider two
load cases for the sign’s four-pile group: (1) 90-kip horizontal load and 777-kip-ft overturning load, and (2)
96-kip horizontal load and 400-kip-ft overturning load. These are the dominant loads for each case; other,
smaller loads are included transverse to the cap. The magnitude of the loads applied to the test structures
for this project were therefore similar to those predicted for a relatively large sign structure.

While the magnitude of the applied loading was similar to that for a “typical” sign structure, the nature of
the test loading was differs from actual loading on sign structures in some ways. The load test involved
one cycle of static loading. Design sign foundation overturning loading is primarily from wind gusts of
short duration, and the loading could be cyclic if the structure is assumed to experience the design load
multiple times over its life. The short duration of the wind loading would presumably result in more
favorable performance (i.e. less deformation) compared to the static loading applied during the load test,
but cyclic loading would likely result in reduced lateral resistance and stiffness as reported by Rollins et
al. (2003) and summarized in Chapter 2.

5.2 Compiled Results and Static Equilibrium Model

To begin to characterize the pile and pile group behavior observed during the load test, several graphs
summarizing the data presented in Chapter 4 were created. The first, Figure 5.1, contains the axial load-
displacement curves for all 8 piles. The axial loads include the measured load from strain gages just
below the ground surface as well as 11.7 kips per pile to account for the weight of the cap. As explained
in Chapter 4, the gages at the pile heads were difficult to interpret due to the contribution of pile cap
stiffness, and there likely was little load shed to the top 2 ft of soil. The displacements are from the
wireline devices since they were installed in line with the pile heads. The wireline devices are not as
precise as the other displacement instruments, which explains why the initial portions of the curves are
not very well defined and the plots are not particularly smooth.

Nevertheless, the axial load-displacement curves are informative. Foremost, the data indicate the piles
reached an ultimate state since the axial loads in nearly every pile reached a maximum value after which
the axial load either decreased or was maintained with significant additional displacement. This is
discussed further in subsequent analyses described below. The magnitude of the ultimate uplift load
ranged from 20 to 30 kips. (Data for HP-4 is around zero, but data for this pile is suspect as discussed
throughout Chapter 4.) The final loads on the compression piles were greater, around 35 to 50 kips with
HP-2 having much greater values, likely due to strain gage difficulties discussed previously. These
compression loads are likely not ultimate values; the compression loads are only as great as required for
vertical force equilibrium, and tip resistance should result in greater geotechnical capacity for
compression piles than uplift piles. (Compression loads were higher than uplift loads because of the
weight of the structures.) The compression loads appear to have decreased unexpectedly before the
applied load was removed. This is perhaps a result of the difficulties interpreting axial loads from strain
gage data when the piles are subject to large bending moments. The initial portions of all axial load-
displacement curves are not well defined, but they are clearly rather steep.
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Figure 5.1. Axial load-displacement curves. Axial loads are the loads measured in the piles plus
11.7 kips, the weight of the each structure divided by four piles.

Bending moment-displacement curves were also plotted as shown in Figure 5.2. Bending moments from
H-pile strain gages were not included due to the issues described in Section 4.4. The curves plot
maximum bending moment, which was just below the ground surface for CIP strain gage and SAA data
and about 5 ft below ground for HP-2 SAA data, versus displacement from the bottom LVDT on the front
(compression) side of the caps since there were no instruments to measure the specific lateral
displacement of each pile head. The curves are all rather similar except for CIP-4, the data for which is
suspect based on discussion in Section 4.4.2. Otherwise, the bending moment-displacement data are
rather linear with no breaks in the curves, suggesting the piles did not reach an ultimate state with respect

to lateral loading.
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Figure 5.2. Bending moment-displacement curves. Data are from strain gages unless SAA is
indicated in the legend.

Taken together, the data from Figure 5.1 and Figure 5.2 suggest the piles had reached their axial
geotechnical capacities, at least for uplift, but had additional lateral capacity remaining at the end of the
test. Two additional sets of graphs were created to confirm these observations. The first, Figure 5.3, plots
the measured axial loads just below the pile head versus the applied load to track the development of
axial loads throughout the test. Included on the plots are dashed lines indicating the axial load couple that
would need to be developed to counteract the applied overturning moment. These were calculated
according to Eq. 5.1, which is based on static equilibrium of bending moments about the center of the cap
at the ground surface, assuming a rigid structure and neglecting moments that would develop at the pile
heads. The calculations also satisfy vertical force equilibrium, i.e. the sum of all axial loads at the pile
head equals the weight of the structure (47 Kips).

, d d
Fapplied ! Helght =2 Phead:comp ' E + 2 Pread:ten E Eq. 5.1

where  Foppiiea load applied to the pile structure

Height = height of load application = 9 ft

Pheaa:comp = axial load developed at compression pile head (two piles)
d = distance between tension and compression piles = 6 ft
Pread:ten = axial load developed at tension pile head (two piles)

For small loads, the data indicate axial loads just less than those required to counteract the applied
moment. As the applied load was increased beyond 40 Kips, the departure from the counteracting axial
force couple became more significant as the measured axial loads leveled off, presumably because they
had reached their geotechnical capacity. These trends are more clear for the CIP pile data than the H-pile
data due to the instrumentation and interpretation difficulties described in Chapters 3 and 4.
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Figure 5.3. Axial load progression plots for (a) H-pile group and (b) CIP pile group. Lines are offset
from origin because of the weight of the structure.

Similar plots were prepared to track the development of bending moments during the test. The graph of
Figure 5.4 shows maximum pile bending moments versus the load applied to the structure. As for the
bending moment-displacement curves, strain gage data for the H-pile cap was neglected, so only SAA
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bending moments are available for the H-pile group. The curves indicate modest increases in bending
moment with applied load until the applied load was about 55 kips, at which point the increases in
bending moment were more substantial. It is interesting and slightly misleading to note that if the axes
had been reversed, the curve shapes would resemble “typical” load-displacement curves. This should not
lead to the erroneous conclusion the piles had reached their lateral capacity, since Figure 5.2 suggests
the bending moments never peaked or leveled off, even at the ultimate test load. Instead, the shape of
the curves in Figure 5.4 suggests the bending resistance of the piles was not mobilized significantly until
the applied overturning load began to fully mobilize the axial geotechnical capacity of the piles. The curve
for CIP-4 is inconsistent with the other CIP pile data, as discussed in Section 4.4.2.

Figure 5.4. Bending moment progression plot.

A more rigorous exploration of the trends observed in Figure 5.3 and Figure 5.4 was pursued with
calculations related to static equilibrium of the CIP structure. As discussed in Section 3.3, the gap
between pile caps and ground surface was maintained throughout the test, so bearing forces were not
included. The results of static equilibrium analysis of the CIP pile cap are presented in Figure 5.5
(bending moment equilibrium) and Figure 5.6 (axial force equilibrium). A similar analysis was pursued for
the H-pile cap but limitations of the strain gage data produced interpretations of no additional value to the
discussions above.

The bending moment equilibrium calculations (Figure 5.5) confirm a primary observation from the
previous interpretations: axial forces increased proportionally with the applied overturning load for small
loads, but when the applied load reached about 50 kips, the axial forces ceased to keep pace with the
increasing applied load, likely because the piles had reached ultimate geotechnical capacity in uplift. At
this point, significant bending moments began to develop at the pile heads, where bending previously was
minor, especially in comparison to the axial force couple. The data of Figure 5.2 suggest the piles had not
reached their ultimate lateral resistance, so it's possible and perhaps likely the pile structures could have
resisted some additional loading albeit with substantial lateral deformation.

In general, the measurements support this static equilibrium analysis, with the measured resistance (axial

force couple and bending moments at pile head) 10 to 40 percent less than the applied overturning
moment. The difference is not surprising considering the difficulties measuring and interpreting strain
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gages and the tendency to underreport stiffness. Further, the loads used in the calculations were
measured slightly below ground, not at the pile head, so their values would be expected to be less than at
the pile heads. The greatest differences were observed at the end of the test, when significant bending
makes strain gage interpretation more difficult and when the applied load was perhaps not as great as
reported since the structures may not have reached equilibrium during loading. Greater differences
calculated for small loads are likely just a result of the sensitivity of the calculations for small numbers.

The weight of the cap has been factored out of the axial force equilibrium calculations presented in Figure
5.6 to make comparisons simpler and more meaningful. As a result of neglecting cap weight, the axial
forces presented are just those developed in response to the applied loading. The axial force equilibrium
calculations presented in Figure 5.6 are less informative than those for moment equilibrium, but they offer
useful perspective on the precision of the strain gage data and its analysis. The differences between
compression and tension loads were by far greatest at the end of the test, when data were recorded only
CIP-2 and CIP-3.

Figure 5.5. Bending moment equilibrium of CIP pile structure, calculated about the center of the
base of the structures. Total resisting moment is the sum of the axial force couple and the pile
head moments. Dashed lines are used for the ultimate load step to indicate the results from CIP-2
and CIP-3 were doubled since there were no data collected for CIP-1 and CIP-4.
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Figure 5.6. Axial force equilibrium of the CIP pile structure. Dashed lines are used for the ultimate
load step to indicate the results from CIP-2 and CIP-3 were doubled since there were no data
collected for CIP-1 and CIP-4.

5.3 Comparison with Ensoft GROUP Model

The static equilibrium calculations discussed above and captured in Figure 5.5 provide a useful
explanation of the observed behavior of four-pile groups subjected primarily to overturning loads. The
load test was modeled with Ensoft GROUP 2014 (Reese et al., 2014) to further evaluate the load test
data, with three objectives:

(1) Confirm the program would predict similar behavior, which was expected since GROUP assumes
a rigid cap and static equilibrium;

(2) Calibrate axial load-displacement and lateral p-y parameters for the load test data,
acknowledging that there is no unique solution for one load test;

(3) Predict behavior of the pile caps for greater loads, i.e. explore the possibility of applying greater
loads to fully mobilize additional bending capacity of the piles.

As described in Section 3.2, a GROUP model was created to aid in the design of the experiment. During
the course of preparing for and performing the load test, GROUP 2014 was released. The original model
was updated to the new version. In addition, a second model was created to model the H-Pile group since
the original model was only for CIP piles. Both calibrated models are discussed in the sections below. All
pile head to cap connections were assumed to be fixed, which is consistent with the data (Sections 4.4.2
and 4.4.3) and recommendations from Rollins and Stenlund (2010) discussed in Chapter 2.

The strategy adopted for calibration of the models was to develop axial load-displacement curves for the
pile heads that resemble the ones plotted in Figure 5.1 and then adjust model parameters to produce
reasonably accurate predictions of observed displacement profiles, bending moment profiles, and load-
displacement curves. There are numerous model parameters that could be adjusted, but the analysis
focused on the magnitude and initial stiffness of the axial load-displacement curves and p-y parameters
since these were deemed most uncertain and significant. After calibrating the models, they were used to
predict response for greater loads than those applied during the load test.
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5.3.1 GROUP Model for CIP Pile Structure

The CIP pile group was modeled first since its data set is more complete. The axial load-displacement
curve used for CIP piles is shown in Figure 5.7. The calibrated curve is plotted alongside the measured
data (same as Figure 5.1). The curve is based on -z analysis with ultimate unit side resistance of 1.25 ksf
in the stiff clay and 4 ksf in the shale and ultimate unit tip resistance of 50 ksf in the shale. The calibrated
curve represents a reasonable model of the measured response.

Figure 5.7. Axial load-displacement curve used to calibrate GROUP model for CIP pile structure.

To match the observed bending behavior, the calibrated GROUP model used the same p-y curves from
the design model, which were based on results of for load tests of drilled shafts at the same site
(Boeckmann et al. 2014), but the calibrated model applied a p-multiplier of 2.5. The resulting lateral
deflection and bending moment profiles for the final load step are shown in Figure 5.8. The results shown
in Figure 5.8 are in good agreement, with the model overpredicting moments to a reasonable degree but
matching both profile shapes reasonably well, although the predicted deflections are small for much of the
shaft’s length. The p-multiplier of 2.5 effectively increases the lateral resistance by a factor of 2.5. This is
reasonable considering the original curves were from 36- and 42-in. diameter drilled shafts, and greater
resistance per unit width is expected from smaller diameter piles. The p-multiplier of 2.5 is a calibration
tool to achieve the match shown in Figure 5.8; it is not an indication of lateral response of all similar four-
pile groups, and it is not recommended for use beyond this research.

A summary of the results predicted by the GROUP model is presented in Figure 5.9, which contains
similar information related to static equilibrium as Figure 5.5. As expected, the GROUP model results
comply with static equilibrium, with the total resisting moment from axial force couple and pile head
moments equaling the total moment applied for each load step. As discussed in the previous section, the
measured forces and moments sum to total resisting moments that are 10 to 40 percent less than applied
moments. The GROUP model predicts slightly greater values for axial force couples and pile head
moments in order to satisfy static equilibrium. The shapes of the measured and GROUP-predicted curves
are similar; most notably, both predict an increase in pile head moments at about the same load (55 kips),
which corresponds to the tension piles approaching their uplift capacity. Interestingly, the GROUP model
predicts mobilization of pile head bending moments at smaller loads than observed, though the values
are the same by the end of the load test. This is explored further in the bending moment-displacement
curve from GROUP shown in Figure 5.10, which also includes the measured data originally shown in
Figure 5.2. The predicted data are consistent with the measured data although the predicted
displacements are slightly less than those observed.
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Figure 5.8. Results of calibrated GROUP model for CIP pile structure at maximum test load (99
kip): (a) displacement profile and (b) bending moment profile.

Figure 5.9. Static equilibrium from GROUP model for CIP pile structure. Solid lines and symbols
used for measurements; dashed lines and open symbols used for GROUP results. Note the total
resisting moment predicted by GROUP is perfectly coincident with the applied moment.
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Figure 5.10. CIP pile head bending moment-displacement curves, including those predicted by
GROUP. GROUP predicts nearly equal bending moments in all four pile heads.

5.3.2 GROUP Model for H-Pile Structure

Modeling the H-pile structure in GROUP was more difficult since its data set was less robust, particularly
for axial loads. The axial load-displacement curve used to calibrate the model is shown in Figure 5.11.
The calibrated curve is plotted alongside the measured data as well as the curve for the calibrated CIP
model (same as Figure 5.7). The curve for the calibrated model is based on t-z analysis with ultimate unit
side resistance of 1.25 ksf in the stiff clay and 4 ksf in the shale and ultimate unit tip resistance of 50 ksf
in the shale. These are the same parameters used to develop the CIP model curve, but the H-pile axial
load-displacement curve has greater axial load capacities because the side and tip areas of the H-piles
are greater, assuming the piles were plugged. The axial load-displacement curve for the calibrated model
is perhaps slightly greater than the measured data, but not to an unreasonable degree considering the
quality and variability of the H-pile axial load data and the response from HP-2. Also, the axial load-
displacement curve for the calibrated model has a greater initial stiffness value than was used for the CIP
model. Greater stiffness values were used to provide a better match to the overall set of test data, not
because the measured axial load-displacement data necessarily suggest such a difference.
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Figure 5.11. Axial load-displacement curves used to calibrate GROUP models.

The H-pile GROUP models also used the p-y curves from Boeckmann et al. (2014) for load tests of drilled
shafts at the same site. A p-multiplier of 0.4 was used. The resulting lateral deflection and bending
moment profiles for the final load step are shown in Figure 5.12. The p-multiplier of 0.4 effectively
decrease the lateral resistance by a factor of 2.5. This is reasonable considering the H-piles were pulled
along their weak bending axes, so the flanges were essentially cutting through the soil as the caps
deflected. The effective diameter for lateral loading, then, was much less than the 10-in. pile width used in
the GROUP calculations. As for CIP pile group calibration, the p-multiplier for H-pile groups was
essentially a calibration tool and is not recommended for specific use beyond this project. Nevertheless,
some reduction in lateral resistance should likely be considered for H-piles loaded along their weak axis.

The results shown in Figure 5.12 indicate a rather good match to the deflection data as well as the
bending moment data. Significantly, though, the predicted bending moment at the pile head is opposite in
sign the moment from SAA data, which has substantial consequences for the overall stability of the
structure (the negative interpreted bending moment from SAA data is detrimental to stability; the GROUP
bending moment adds resistance). It is likely the interpreted SAA bending moments at the pile head are
mistaken due to difficulties associated with pile cap stiffness and interpreting rotation data at the pile
head. (These issues were likely avoided to some degree for the CIP data because of how the SAA joints
lined up with the cap.) Because of these difficulties, the interpreted SAA bending moment at the ground
surface and 2 ft below the ground surface were plotted against displacement in Figure 5.13 alongside the
GROUP prediction. (The interpreted SAA data are different from those in Figure 5.2, which were
maximum values from 5 ft below ground.)

The GROUP prediction of bending moments at the pile head is between the two values plotted from SAA
data, starting negative and finishing positive near the end of the test. The interpretation is consistent with
the observation noted throughout this chapter: pile head bending moments are mobilized and play a
significant role in stabilizing the pile group structure once the load in the tension piles approaches the
geotechnical uplift capacity. The results for the SAA data are an especially obvious case of this behavior,
as the initial pile head bending moments are detrimental to stability, becoming stabilizing only when the
uplift capacity of the tension piles has been almost fully utilized. Finally, it's worth noting GROUP
analyses do not predict negative pile head bending moments when the p-multiplier is 1.0 and the H-piles
are oriented in the strong direction.
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Figure 5.12. Results of axial match calibrated GROUP model for H-pile structure at maximum test
load (99 kip): (a) displacement profile and (b) bending moment profile.

Figure 5.13. H-pile head bending moment-displacement curves, including those predicted by
GROUP. GROUP predicts nearly equal bending moments in all four pile heads.
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5.3.3 Predictions at Greater Loads from GROUP Models

As described in Section 3.5, both pile structures were deflecting considerably and it was difficult to apply
additional load when the load test was terminated. However, darkness was also a consideration in
terminating the test, so it is possible the pile structures could have supported additional load had more
time been allowed. To investigate this possibility, the calibrated GROUP models were used to predict
behavior at loads beyond those reached during the load test. The results are shown in Figure 5.14 and
Figure 5.15. For the CIP model, the applied load at which GROUP predicted failure was 110 kips, just
above the actual applied load at failure of 100 kips. However, the GROUP model failure was related to
moment capacity of the CIP pile, so an additional model was created using a CIP pile with elastic El
similar to that for the nonlinear CIP model. The resulting model reached failure at 240 kips, with pile head
bending moments 7 times greater than those observed during the load test resulting in a group capacity
nearly 2.5 times the ultimate applied load from the load test. The H-pile GROUP model was calibrated
with a linear El. The model predicted failure at 120 kips, beyond which the model would not converge.
Predicted pile head moments and overall group overturning capacity for the H pile group were likely
limited by the orientation of the piles, which was speculated in Section 5.3.2 as the cause for model
calibrations requiring a p-multiplier of 0.4.

Figure 5.14. Applied load versus horizontal displacement from GROUP models. Solid lines and
symbols used for GROUP results for actual loads from load test. Dashed lines and open symbols
used for GROUP predictions beyond loads applied during test. Dotted lines and small symbols
used for measured data.
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Figure 5.15. Pile head bending moment versus horizontal displacement from GROUP models.
Solid lines and symbols used for GROUP results for actual loads from load test. Dashed lines and
open symbols used for GROUP predictions beyond loads applied during test. Dotted lines and

5.3.4

small symbols used for measured data.

Summary of Observations from GROUP Models

The GROUP models are very useful for expanding upon the findings from the summary plots and static
equilibrium analyses presented in Section 5.1. In summary:

The models were largely successful in predicting performance of the pile groups. Displacements
and bending moment magnitudes agreed rather well. The shape of bending moment profiles were
generally similar. The overall test performance (i.e. load-displacement curves such as Figure 5.10
and test summary plots such as Figure 5.9 and Figure 5.14) also showed good agreement.

The quality of the agreement between models and test data is qualified by noting there is likely no
unique set of parameters to match the observed performance considering there was only one
load test per pile group, the variability of observed responses, and the number of parameters
needed to specify an axial load-displacement curve and p-y curves, among other model inputs.
The axial load displacement curves were specified from {-z analyses to approximately match the
observed responses. The matches were reasonable, but the measured axial loads were rather
variable. The results of the GROUP models were sensitive to axial load-displacement curves at
the pile head. The initial stiffness of the curves seemed to be of particular importance. This is
similar to the observations in NCHRP Report 461 (2001), as reported in Chapter 2.

The GROUP model results offer additional evidence that bending moments that develop at the
pile heads can offer significant additional resistance to overturning loads, especially once the
geotechnical uplift capacity of the tension pile heads has been exceeded. With additional study,
this trend could potentially have benefits for design as discussed further in Chapter 6.

Calibration of lateral response was achieved via p-multipliers. The specific values used (2.5 for
CIP piles and 0.4 for H-piles) are not recommended for use beyond this project, but the H-pile
multiplier being less than 1.0 is an indication some reduction in lateral resistance should be
considered when H-piles are loaded along their weak axis.
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e The pile head connections were best modeled as fixed, which is consistent with the
recommendation from Rollins and Stenlund (2010), as reported in Chapter 2.

o CIP piles appear to have developed bending moments at the pile head that were beneficial to
overturning stability throughout the test, whereas bending moments at the head of the H-piles
were initially detrimental until greater loads were applied. This could be related to the orientation
of the H-piles, which results in lower bending stiffness and the pile flanges “slicing” through the
soil. Additional parametric study and load tests would be necessary to quantify this trend and
others observed from the test results.
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6. Conclusions & Recommendations

The load test was successful, resulting in axial geotechnical failure of the tension piles while maintaining
fixity toward the bottom of the piles. The resulting data set is considerable and useful. Displacement data
were collected at 11 points on each pile structure. The displacement data offer confirmation of three main
observations from the pile load test: the tension piles had reached their uplift capacity when the test was
terminated, the H-pile structure experienced more significant displacement and rotation than the CIP pile
structure, and both pile caps rotated rigidly. The strain gage and SAA data were useful for characterizing
the axial and bending moment behavior of the piles. Driving damage perhaps related to installation issues
hampered the usefulness of the strain gage data for H-piles, but the SAA data redundancy was helpful for
characterizing lateral response. Pile head connections appeared to be fixed, which is consistent with
literature as reported in Chapter 2.

Interpretation of the measured loads and displacements suggests overturning load transfer for the four-
pile groups typically employed by WisDOT for sign foundations is reasonably predicted from simple
consideration of static equilibrium up to loads where the uplift capacity of the tension piles is approached.
Design capacity for overturning of four-pile groups can therefore be calculated using (1) pile loads
corresponding to the axial force couple that satisfies moment equilibrium of the rigid sign structures and
(2) pile capacities from appropriate design methods for axial and lateral loading of driven piles.

Additional load carrying capacity, beyond that attributed to the axial force couple alone, can potentially be
mobilized from pile head bending moments that develop as the force couple approaches the tension pile
uplift capacity. The test measurements support the potential for mobilizing this additional resistance, and
numerical modeling with Ensoft GROUP lends confirmation as well. Contributions from pile bending
resistance would be accompanied by significant inelastic displacement. However, some design efficiency
could be realized by considering such additional capacity for extreme event loading cases if the structural
capacity of the piles is sufficient. Additional load tests are needed to confirm and quantify potential
contributions from pile head bending moments.

Results of the load test indicate the strength limit state resistance factors for single piles in uplift
discussed in Chapter 2 (ranging from 0.2 to 0.4) are likely to be inappropriately low for pile groups
subjected to overturning loads. The observed failure was ductile and the structures likely could have
withstood greater loads had the test continued. A more appropriate resistance factor for the four-pile
groups could be established based on probabilistic analysis of the groups. Such a study could also
consider and quantify the additional resistance offered by pile head moments.
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Appendix A — Plans and Calculations from WisDOT Sign Structure S-05-168
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SUMMARY OF CALCULATION PROCEDURES

The purpose of these calculations was to provide the structural design for the sign structure. The
calculations were carried out under the direct supervision of a professional engineer registered in
Wisconsin.
The design was completed under the following codes:
AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and
Traffic Signals
AASHTO Standard Specifications for Highway Bridges, 17" Edition
Wisconsin Bridge Manual
Wisconsin Facilities Development Manual
The following publications were used as references:
ACI 318-05 Building Code and Commentary

The following material strengths were used in the calculations:

Concrete, f'c = 3,500 psi
HS Reinforcement Bars, fy = 60,000 psi

The following design loads were used in the calculations:
Dead loads are in accordance with shown physical structure.
Ice load — 3 psf to 1 face of the signs and around the full surface of the structural members.
Wind Load - 90 mph (3-second gust speed).

The soil properties used in the foundation design were as recommended in the geotechnical report.

All elements were designed based on the above and the supporting calculations are provided in this
book.



Pile Group Analysis

Job: 6099 Designed By: CES
Description: Outside Towers 1 and 3 Checked By:
Time: 9:00 AM 10/31/2012 Program:Pile Group Analysis 2.2
PILE GROUP DATA
Number of Piles H
Piles Fixed At Top? : No
Piles Fixed At Bottom? : No
Pile Width : 12.00 In
Depth : 12.00 In
Perimeter : 71.00 In
Shaft Area : 18.40 In"2
Point Area : 18.40 In"2
Modulus, E : 3000.00 K/In"2
Inertia, Ix : 472.00 In"4
Inertia, Iy : 153.00 In"4
Torsion, J : 1.80 In™4
Vertical Group Factor : 1.00
Horizontal Group Factor : 1.00

Horizontal Soil Data

As : 150.00 K/Ft"3
Bs : 200.00 K/Ft"3
Exponent 0 0.67

Vertical Soil Data
Pile Point Subgrade Modulus : 200.00 K/Ft~3
Skin Friction

From : 0.000 Ft To : 4.500 Ft Shear 1.000 K/Ft "2 Slip 0.100 In

4.500 9.000 1.000 0.100

9.000 13.500 1.000 0.100

13.500 18.000 1.000 0.100

18.000 22.500 1.000 0.100

22.500 27.000 1.000 0.100

27.000 31.500 1.000 0.100

31.500 36.000 1.000 0.100

36.000 40.500 1.000 0.100

40.500 45.000 1.000 0.100

PILE LOCATIONS
No. X Y 4 Length Bearing Batter
Units: Ft Ft Ft Ft Deg

1 0.000 0.000 0.000 45.000 0.000 0.000
2 3.500 0.000 0.000 45.000 0.000 0.000
3 0.000 0.000 6.000 45.000 0.000 0.000
4 3.500 0.000 6.000 45.000 0.000 0.000
APPLTIED FORCES

C.G. of Forces : 1.75 Ft (X), 0.00 Ft (Y), 3.00 Ft (2)

Loads
PX : 4.00 K
PY : -90.00 K
PZ : 25.00 K
MX : 777.00 Ft-K
MY : 21.00 Ft-K
MZ : 124.00 Ft-K




ANALYSTIS RESULTS

PILE ELEM MAX MAX MAX MAX POINT MAX DISPLACEMENTS
NO NO AXIAL MOMENT X MOMENT Y TORSION LOAD SKIN FRIC DX DZ DY
Units: K K-Ft K-Ft K-Ft K K-Ft "2 In In In
1 1 24.536 10.005 0.190 0.000 -0.001 -0.45574 -0.013 0.317 0.0406
2 46 59.964 7.559 0.190 0.000 -0.003 -1.11381 -0.013 0.239 0.111
3 91 -104.964 10.005 -1.756 0.000 0.005 1.94967 0.120 0.317 -0.195
4 136 -69.536 7.559 -1.756 0.000 0.004 1.29160 0.120 0.239 -0.129

Vertical Equilibrium Check:

Sum of vertical load at top of piles: -90.000 (Compression)
Sum of vertical forces supported by skin friction: -89.996 (Compression)
Sum of vertical forces supported by the pile points: -0.005 (Compression)

Sum of vertical forces supported by 'horizontal' subgrade: 0.000 (Tension)



Pile Group Analysis

Job: 6099 Designed By: CES
Description: Outside Towers 1 and 3 Checked By:
Time: 9:57 AM 11/27/2012 Program:Pile Group Analysis 2.2
PILE GROUP DATA
Number of Piles H
Piles Fixed At Top? : No
Piles Fixed At Bottom? : No
Pile Width : 12.00 In
Depth : 12.00 In
Perimeter : 71.00 In
Shaft Area : 18.40 In"2
Point Area : 18.40 In"2
Modulus, E : 3000.00 K/In"2
Inertia, Ix : 472.00 In"4
Inertia, Iy : 153.00 In"4
Torsion, J : 1.80 In™4
Vertical Group Factor : 1.00
Horizontal Group Factor : 1.00

Horizontal Soil Data

As : 150.00 K/Ft"3
Bs : 200.00 K/Ft"3
Exponent 0 0.67

Vertical Soil Data
Pile Point Subgrade Modulus : 200.00 K/Ft~3
Skin Friction

From : 0.000 Ft To : 4.500 Ft Shear 1.000 K/Ft "2 Slip 0.100 In

4.500 9.000 1.000 0.100

9.000 13.500 1.000 0.100

13.500 18.000 1.000 0.100

18.000 22.500 1.000 0.100

22.500 27.000 1.000 0.100

27.000 31.500 1.000 0.100

31.500 36.000 1.000 0.100

36.000 40.500 1.000 0.100

40.500 45.000 1.000 0.100

PILE LOCATIONS
No. X Y 4 Length Bearing Batter
Units: Ft Ft Ft Ft Deg

1 0.000 0.000 0.000 45.000 0.000 0.000
2 3.500 0.000 0.000 45.000 0.000 0.000
3 0.000 0.000 6.000 45.000 0.000 0.000
4 3.500 0.000 6.000 45.000 0.000 0.000
APPLTIED FORCES

C.G. of Forces : 1.75 Ft (X), 0.00 Ft (Y), 3.00 Ft (2)

Loads
PX : 5.00 K
PY : -96.00 K
PZ : 13.00 K
MX : 400.00 Ft-K
MY : 11.00 Ft-K
MZ : 148.00 Ft-K




ANALYSTIS RESULTS

PILE ELEM MAX MAX MAX MAX POINT MAX DISPLACEMENTS
NO NO AXIAL MOMENT X MOMENT Y TORSION LOAD SKIN FRIC DX DZ DY
Units: K K-Ft K-Ft K-Ft K K-Ft "2 In In In
1 1 -11.810 5.207 -0.469 0.000 0.001 0.21936 0.032 0.165 -0.022
2 46 30.476 3.926 -0.469 0.000 -0.002 -0.56608 0.032 0.124 0.057
3 91 -78.476 5.207 -1.488 0.000 0.004 1.45767 0.102 0.165 -0.14¢
4 136 -36.190 3.926 -1.488 0.000 0.002 0.67222 0.102 0.124 -0.067

Vertical Equilibrium Check:

Sum of vertical load at top of piles: -96.000 (Compression)
Sum of vertical forces supported by skin friction: -95.995 (Compression)
Sum of vertical forces supported by the pile points: -0.005 (Compression)

Sum of vertical forces supported by 'horizontal' subgrade: 0.000 (Tension)
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DRIVEN PILE LOG

PROJECT: WisDOT Sign Foundations PROJECT NO.:
PILE CONTRACTOR: Boone Construction Co.
WEATHER: 80s, sunny DATE: 6/2/2014
BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. CIP Cap
PILE NO.: CIP-1 PILE TYPE: CIP (Cast-in-Place; 10.75" OD x 0.25" wall closed-
ended pipe backfilled with concrete)
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 4 13.75 2.5 Hammer: ICE 32-S
2 6 13.96 1.875 rated energy 26,000 ft-lbs
3 7 14.11 1.625 weight of ram 3,000 Ibs
4 10 striker plate 200 |bs
5 8 helmet 610 Ibs
6 8 pile cap 605 Ibs
7 8
8 8 Original pile length 20 ft
9 8 Pile Tip Depth 14'-3"
10 9 Stick-Up Length 5'-9"
11 8 Date Cast/Poured 6/2/14
12 12 Date Driven 6/2/14
13 10 Time Start 12:49
14 17 Time Stop 12:54
15 44 <----11 for 3" Driving Delay Time 1_min
16 Actual Driving Time ~4 mins
17
18 Termination Parameters
19 Ram Stroke 7.5
20 Pile Set 0.325"
21
22 ENR Capacity
23
24 53 tons
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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DRIVEN PILE LOG

PROJECT: WisDOT Sign Foundations PROJECT NO.:
PILE CONTRACTOR: Boone Construction Co.
WEATHER: 80s, sunny DATE: 6/2/2014
BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. CIP Cap
PILE NO.: CIP-2 PILE TYPE: CIP (Cast-in-Place; 10.75" OD x 0.25" wall closed-
ended pipe backfilled with concrete)
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 9 13.04 4.5 Hammer: ICE 32-S
2 7 13.42 3.75 rated energy 26,000 ft-lbs
3 6 13.73 3 weight of ram 3,000 Ibs
4 11 13.98 2.25 striker plate 200 |bs
5 10 14.17 2 helmet 610 Ibs
6 10 pile cap 605 Ibs
7 7
8 8 Original pile length 20 ft
9 7 Pile Tip Depth 14'-4"
10 8 Stick-Up Length 5'-8"
11 9 Date Cast/Poured 6/2/14
12 10 Date Driven 6/2/14
13 11 Time Start 12:39
14 12 Time Stop 12:45
15 48 <----16 _for 4" Driving Delay Time 2 mins
16 Actual Driving Time ~4 mins
17
18 Termination Parameters
19 Ram Stroke 7.5
20 Pile Set 0.4"
21
22 ENR Capacity
23
24 45 tons
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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DRIVEN PILE LOG

PROJECT: WisDOT Sign Foundations PROJECT NO.:
PILE CONTRACTOR: Boone Construction Co.
WEATHER: 80s, sunny DATE: 6/2/2014
BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. CIP Cap
PILE NO.: CIP-3 PILE TYPE: CIP (Cast-in-Place; 10.75" OD x 0.25" wall closed-
ended pipe backfilled with concrete)
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 5 13.90 2.5 Hammer: ICE 32-S
2 5 14.10 1.75 rated energy 26,000 ft-lbs
3 8 14.25 1.625 weight of ram 3,000 Ibs
4 10 striker plate 200 |bs
5 10 helmet 610 Ibs
6 10 pile cap 605 Ibs
7 8
8 7 Original pile length 20 ft
9 7 Pile Tip Depth 14'-4-5/8"
10 8 Stick-Up Length 5'-7-3/8"
11 9 Date Cast/Poured 6/2/14
12 11 Date Driven 6/2/14
13 11 Time Start 12:57
14 16 Time Stop 13:01
15 36 <----14 for 4-5/8" Driving Delay Time 0_min
16 Actual Driving Time ~4 mins
17
18 Termination Parameters
19 Ram Stroke 7.5
20 Pile Set 0.325"
21
22 ENR Capacity
23
24 53 tons
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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DRIVEN PILE LOG

PROJECT: WisDOT Sign Foundations PROJECT NO.:
PILE CONTRACTOR: Boone Construction Co.
WEATHER: 80s, sunny DATE: 6/2/2014
BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. CIP Cap
PILE NO.: CIP4 PILE TYPE: CIP (Cast-in-Place; 10.75" OD x 0.25" wall closed-
ended pipe backfilled with concrete)
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 5 13.48 3.5 Hammer: ICE 32-S
2 4 13.77 3 rated energy 26,000 ft-lbs
3 6 14.02 2.5 weight of ram 3,000 Ibs
4 11 14.23 2 striker plate 200 Ibs
5 10 14.40 1.75 helmet 610 Ibs
6 10 pile cap 605 Ibs
7 9
8 9 Original pile length 20 ft
9 11 Pile Tip Depth 14'-6-1/2"
10 11 Stick-Up Length 5'-5-1/2"
11 11 Date Cast/Poured 6/2/14
12 12 Date Driven 6/2/14
13 14 Time Start 13:06
14 16 Time Stop 13:09
15 35 <----19 for 6-1/2" Driving Delay Time 0_min
16 Actual Driving Time ~3 mins
17
18 Termination Parameters
19 Ram Stroke 7.5
20 Pile Set 0.35"
21
22 ENR Capacity
23
24 50 tons
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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PROJECT: WisDOT Sign Foundations

DRIVEN PILE LOG

PROJECT NO.:

PILE CONTRACTOR: Boone Construction Co.

WEATHER: low 90s, sunny

DATE:

6/3/2014

BRIDGE NO.: N/A

DESIGN LOAD (TONS): 50-60

BENT NO. H-Pile Cap

PILE NO.: HP-1

PILE TYPE:

HP10x42

Depth
(ft)

Blow Depth

(ft)

in.

5 blows

-
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Hammer: ICE 32-S
rated energy 26,000 ft-lbs
weight of ram 3,000 Ibs
striker plate 200 |bs
helmet 610 Ibs
pile cap 605 Ibs

Original pile length 19'-5"

Pile Tip Depth 14'-4"

Stick-Up Length 5'-1"

Date Cast/Poured N/A

Date Driven 6/3/14

Time Start
Time Stop

12:57
13:00

Driving Delay Time 0_mins

Actual Driving Time 3_mins

Termination Parameters

Ram Stroke 7.5

Pile Set 0.375"

ENR Capacity

47 tons

REMARKS:
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PROJECT: WisDOT Sign Foundations

DRIVEN PILE LOG

PROJECT NO.:

PILE CONTRACTOR: Boone Construction Co.

WEATHER: low 90s, sunny

DATE: 6/3/2014

BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. H-Pile Cap
PILE NO.: HP-2 PILE TYPE: HP10x42
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 4 Hammer: ICE 32-S
2 5 rated energy 26,000 ft-lbs
3 5 weight of ram 3,000 Ibs
4 8 striker plate 200 |bs
5 8 helmet 610 Ibs
6 7 pile cap 605 Ibs
7 7
8 6 Original pile length 23'-8"
9 7 Pile Tip Depth 14'-5"
10 7 Stick-Up Length 9-3"
11 9 Date Cast/Poured N/A
12 9 Date Driven 6/3/14
13 10 Time Start 12:41
14 15 Time Stop 12:44
15 24 <----10 for 5" Driving Delay Time 0_mins
16 Actual Driving Time 3 mins
17
18 Termination Parameters
19 Ram Stroke 7.5
20 Pile Set ??0.4" 7?7
21
22 ENR Capacity
23
24 45 ?7? tons
25
26 No marks were made on pile before refusal.
27 AZB noticed abrupt increase in stroke and
28 decrease in observed pile set and quickly
29 indicated to crew to terminate driving.
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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PROJECT: WisDOT Sign Foundations

DRIVEN PILE LOG

PROJECT NO.:

PILE CONTRACTOR: Boone Construction Co.

WEATHER: low 90s, sunny

DATE:

6/3/2014

BRIDGE NO.: N/A

DESIGN LOAD (TONS): 50-60

BENT NO. H-Pile Cap

PILE NO.: HP-3

PILE TYPE:

HP10x42

Depth
(ft)

Depth
(ft)

Blow

in.
5 blows

-

14.35

2.5

14.56
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14.79

3
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2.75

Ol (N|o|jo|d]|w]|N

=y
o

-
-

-
N

=y
w

N
>

-
[&)]

<---31 for 1'6"

RN ©|eo|oo|~|oo|~|o|~|~|o ||| =

-
o))

<--—-31 for 1'6"

-
~

=y
[os]

=y
©

N
o

N
=

N
N

N
w

N
N

N
(4]

N
(o)}

N
<

N
[os]

N
©

w
o

w
=

w
N

w
w

w
~

w
(&)

w
(o}

w
by

w
(o)

w
©

40

Hammer: ICE 32-S

rated energy 26,000 ft-lbs
weight of ram 3,000 Ibs

striker plate

helmet 610

200 Ibs

Ibs

pile cap 605

Original pile length

Ibs

20|_5"

Pile Tip Depth

1 5"6“

Stick-Up Length

411"

Date Cast/Poured

N/A

Date Driven

6/3/14

Time Start
Time Stop

12:32
12:36

Driving Delay Time

0 mins

Actual Driving Time

4 mins

Termination Parameters
Ram Stroke

7.5

Pile Set

0.55"

ENR Capacity

35 tons

REMARKS:
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DRIVEN PILE LOG

PROJECT: WisDOT Sign Foundations PROJECT NO.:
PILE CONTRACTOR: Boone Construction Co.
WEATHER: low 90s, sunny DATE: 6/3/2014
BRIDGE NO.: N/A DESIGN LOAD (TONS): 50-60
BENT NO. H-Pile Cap
PILE NO.: HP-4 PILE TYPE: HP10x42
Depth Blow Depth in.
(ft) ft. (ft) 5 blows
1 4 13.33 2.5 Hammer: ICE 32-S
2 5 13.54 2.5 rated energy 26,000 ft-lbs
3 4 13.75 2.5 weight of ram 3,000 Ibs
4 8 13.96 3 striker plate 200 Ibs
5 9 14.21 1.5 helmet 610 Ibs
6 6 pile cap 605 Ibs
7 5
8 7 Original pile length 18'-9"
9 6 Pile Tip Depth 15'-2"
10 10 Stick-Up Length 3-7"
11 7 Date Cast/Poured N/A
12 10 Date Driven 6/3/14
13 10 Time Start 12:18
14 16 Time Stop 12:25
15 18 Driving Delay Time 4 mins
16 108 <18 for 2" Actual Driving Time 3_mins
17 BUT right after restarting hammer
18 (BPF likely less if had kept driving.) Termination Parameters
19 Ram Stroke 6.5'
20 Pile Set 0.3"
21
22 ENR Capacity
23
24 49 tons
25
26 Driving delay to remove hanger for instrument
27 cables, which was about to hit ground.
28
29 Only saw one ring on ram -- stroke less.
30
31
32
33
34
35
36
37
38
39
40
REMARKS:
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