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EXECUTIVE SUMMARY 

Background 

Artificial Intelligence (AI) has emerged as a transformative force in transportation, enabling smarter, safer, 

and more efficient systems. However, integrating AI into transportation agency operations requires a 

strategic understanding of current capabilities, stakeholder perceptions, data readiness, and implementation 

risks. This study aims to address these gaps by providing a comprehensive, stakeholder-informed roadmap 

for advancing AI deployment across WisDOT’s operations. 

Objectives 

● Map the current and potential applications of AI in six major transportation domains: Asset 

Management, Transportation Safety, Traffic Operations, Digital Twin, Autonomous Vehicles, and 

Generative AI. 

● Understand the perceptions, expectations, and concerns about AI from diverse stakeholder groups, 

particularly state agencies and academic/industry experts. 

● Identify key challenges, including data quality, skill gaps, and institutional trust, that affect AI 

readiness. 

Research Approach 

To meet these objectives, the study adopted a multi-method approach: 

● Literature Review: A systematic review of national and international efforts related to AI in 

transportation. 

● Stakeholder Survey: A structured survey was distributed to over 100 transportation professionals 

across public agencies, academia, and private industry. 

● Expert Interviews: In-depth follow-up interviews were conducted with experts from state DOTs 

and engineering firms. 

● AI Maturity Mapping: Perception-based assessments were used to evaluate AI applications in 

terms of data quality, implementation timeline, risk-benefit balance, and trustworthiness. 

Key Findings 

● Divergence in Perceptions: State agencies prioritize trustworthiness and practical implementation, 

while academic stakeholders focus more on innovation and technical readiness. 
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● Application Maturity: Among the six AI domains, Asset Management and Operations show the 

highest perceived readiness and return on investment, while Digital Twin and Generative AI are 

recognized for their long-term potential but currently face higher uncertainty. 

● Barriers to Implementation: 

○ Data fragmentation and lack of standardized formats. 

○ Insufficient AI training and workforce development. 

○ Lack of inter-agency collaboration mechanisms. 

● Benefit-Risk Tradeoffs: High-benefit applications like safety analytics are also associated with 

higher perceived risk, especially regarding public trust and ethical concerns. 

Conclusions and Implementable Recommendations 

This research reveals that while AI is advancing rapidly in the broader transportation sector, its adoption 

by public agencies remains in relatively early stages. Significant opportunities for these agencies lie in 

Asset Management, Safety, and Traffic Operations, which offer the best near-term benefits. Key challenges 

include data quality and management, alongside notable skills gaps in the workforce. 

The research makes the following prioritized recommendations to WisDOT: 

1. Establish robust data governance to ensure data quality and standardization. 

2. Prioritize initial AI deployments in Asset Management, Safety, and Operations due to their high 

benefit and shorter implementation timelines. 

3. Implement tiered AI training programs to address identified workforce skill gaps. 

4. Develop clear AI governance policies to ensure trustworthy, responsible, and ethical AI. 

5. Pursue a diversified partnership strategy to leverage external expertise and resources. 

A phased implementation roadmap is proposed: 

● Short-term (1–3 years): Focus on foundational steps such as improving data infrastructure, 

deploying proven AI tools (e.g., for asset monitoring), and building internal capacity through 

training and pilot programs. 

● Medium-term (4–7 years): Scale successful use cases, expand to complex systems such as real-

time operations management, and enhance inter-agency collaboration. 

● Long-term (8+ years): Pursue integration of advanced AI systems, including predictive digital 

twins, autonomous infrastructure readiness, and generative AI applications. 
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While this study provides a strategic framework, detailed financial planning for specific AI investments 

(e.g., dollar amounts or budget allocation) was beyond its scope. Looking ahead, a suggested Phase II 

project would build directly on these findings. Key activities would include conducting in-depth case 

studies for high-priority use cases, expanding data collection (internally from WisDOT operations and 

externally from vendors, other agencies, and other states), developing initial AI prototypes, co-designing a 

workforce development roadmap, and refining the implementation plan with detailed, year-by-year actions 

and investment scenarios. This next phase would aim to translate the strategic vision into concrete, 

operational steps for WisDOT’s AI adoption journey. 
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1. INTRODUCTION 

Artificial Intelligence (AI) has rapidly emerged as one of the most transformative technologies, reshaping 

numerous industries by enabling machines to simulate human intelligence. AI’s ability to learn from data, 

recognize patterns, and make decisions has led to its application across a range of sectors, including finance, 

healthcare, and national security. Specifically, its potential to revolutionize transportation offers solutions 

to long-standing challenges, including traffic congestion, crashes, and operational inefficiencies. 

Transportation is becoming increasingly complex due to growing urbanization, higher vehicle volumes, 

and evolving mobility needs. However, traditional transportation network management methods, such as 

manual traffic monitoring and infrastructure maintenance, are no longer sufficient to meet these demands. 

AI’s advancement over the past decade, driven by advancements in machine learning (ML), big data, and 

computational power, has offered new possibilities for optimizing transportation. 

AI’s integration into transportation has led to a range of successful applications, from traffic management 

and safety analysis to infrastructure maintenance and autonomous vehicles. Key areas where AI has 

demonstrated significant potential include transportation asset management, transportation safety, 

transportation operations, digital twins, autonomous vehicles, and generative AI. The U.S. Department of 

Transportation (USDOT), in collaboration with the Federal Highway Administration (FHWA), Federal 

Railroad Administration (FRA), and Federal Aviation Administration (FAA), has started exploring AI’s 

potential within the transportation ecosystem. For example, the FAA collaborates with government, 

industry, and academia to develop regulations and standards for drone operations through comprehensive 

research, supporting safe drone integration. The FHWA awarded a $4.9 million grant to the Delaware DOT 

for the AI Integrated Transportation Management System (AIITMS). AIITMS analyzes high-resolution 

data from various sources to manage traffic and generate real-time congestion solutions. The FRA is also 

advancing the use of AI in transportation by investing in ML and computer vision technologies to enhance 

railroad safety, such as developing autonomous inspection technologies. These efforts seek to enhance the 

precision and efficiency of railway inspections, contributing to greater safety and reliability in the railroad 

industry. 

AI’s role in transportation is still evolving with undeniable potential. As the USDOT and state 

transportation agencies continue to explore and implement AI-based solutions, it is necessary to focus on 

valuable applications that can deliver transformative benefits. By integrating AI into safety-critical domains 

and optimizing transportation operations, AI can help address some of the most pressing challenges facing 

transportation today, including congestion, safety, and sustainability. However, it is crucial to adopt a 

strategic approach to AI deployment, ensuring that stakeholders are well-informed about AI’s capabilities 

and limitations. This project aims to address three interconnected challenges: 



   
 

2 
 

1. Mapping the current landscape of AI deployment in transportation across six application domains—

Transportation Asset Management, Transportation Safety, Transportation Operations, Digital 

Twins, Autonomous Vehicles, and Generative AI; 

2. Understanding the variation in perceived benefits, risks, and readiness among key stakeholder 

groups, especially between public sector agencies and academic/research institutions; and 

3. Informing the strategic planning and implementation roadmap for the Wisconsin Department of 

Transportation (WisDOT) and other agencies through evidence-based insights into user perceptions, 

benefit-risk tradeoffs, and priority areas for investment. 

To achieve this, we conducted a targeted literature review, collected perception data through a structured 

survey and follow-up interview, and performed a cross-sectional analysis of professional attitudes toward 

AI deployment. Key dimensions of analysis included data quality and availability, perceived benefit-risk 

balance, application maturity, time investment expectations, and organizational perspectives. The results 

highlight areas of alignment and divergence among transportation professionals and reveal how experience, 

institutional affiliation, and domain maturity shape attitudes toward AI. 
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2. LITERATURE REVIEW 

To provide a structured and comprehensive understanding of the state of the practice, the literature was 

categorized into six representative groups based on their relevance to current agency priorities and future 

innovation potential: Transportation Asset Management, Transportation Safety, Transportation Operations, 

Autonomous Vehicles, Digital Twins, and Generative AI. These categories reflect both well-established 

domains of application and emerging areas that are poised to transform transportation planning, 

management, and service delivery. Each category is reviewed in detail to summarize the latest technical 

advances, key use cases, and operational considerations, along with a discussion of practical limitations 

that agencies must address for effective deployment. A complete and comprehensive literature review is 

provided in Appendix A. 

2.1. Transportation Asset Management 

AI enhances asset management by improving decision-making and resource allocation. AI tools are 

developed for tasks such as automated assessments of pavements and bridges, real-time data analysis, and 

predictive maintenance [1], [2]. For instance, AI techniques like computer vision, deep learning, and 

machine learning are used to detect defects like cracks or corrosion [4], [8], predict asset maintenance needs 

[11], and analyze images of road markings [9], [10]. Additionally, AI can forecast future asset conditions 

by analyzing historical data and supporting proactive maintenance strategies [13]. DOTs have used AI for 

automatic pavement condition assessments [3], [7], bridge inspections [14], [15], and roadway geometry 

analysis [12]. AI automates data collection and analysis, speeds up inspections, improves accuracy, and 

minimizes human error [5], [6]. AI's predictive capabilities help transportation agencies allocate resources 

more effectively. By reducing the need for manual inspections, AI enhances safety, especially in hard-to-

reach or dangerous areas [16]. For example, the Texas Department of Transportation (TxDOT), in 

collaboration with the University of Houston, expanded its Transportation Asset Management Plan (TAMP) 

to include signage and signal assets, leveraging AI for automated condition assessment and prediction. 

However, implementing AI in asset management faces challenges. For instance, limited access to high-

quality data impacts the accuracy of AI systems [17]. Additionally, agencies need to train staff in AI and 

advanced data analysis. Another issue is the reliability of sensors, which can provide inaccurate data or lack 

sufficient coverage. 

2.2. Transportation Safety 

AI applications in transportation safety encompass many innovative applications, including crash prediction 

systems, VRU monitoring, roadside hazard assessment, road hazard detection, and driver monitoring [18]-

[20]. Key AI methods in this field are computer vision, reinforcement learning, statistical learning, deep 
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learning, and machine learning [21]-[23]. These techniques enable systems to process data, learn from 

experiences, recognize patterns, and continuously improve safety [24], [25]. AI enhances hazard detection, 

enables real-time interventions, and offers cost-effective solutions by utilizing existing infrastructure [26]-

[28]. Moreover, AI improves understanding of crash scenarios [29], [30], aids in prioritizing safety 

measures [31], [32], and contributes to overall road safety and traffic management improvements [33], [34]. 

For instance, the Hawaii Department of Transportation (HDOT) participated in the Intersection Safety 

Challenge by deploying AI-based image recognition systems to detect vulnerable road users (VRUs) and 

enhance early warning capabilities. However, implementing AI in transportation safety comes with certain 

costs and potential risks [35]-[40]. These include data quality issues, the need for extensive testing to 

prevent false detections, high computational requirements, and data privacy concerns. Balancing safety 

with traffic efficiency and integrating new systems with existing infrastructure also present ongoing 

challenges [41]-[50]. 

2.3. Transportation Operations 

AI applications in transportation operations include ramp metering, vehicle platooning, traffic flow 

prediction, signal timing optimization, and variable speed limits [51]-[53]. The backbone of these 

applications comprises advanced AI methods including computer vision, natural language processing 

(NLP), and machine learning [54]-[56]. AI applications offer significant benefits for transportation 

operations. For example, they could enhance traffic flow with up to 6% improvement reported in some 

projects [61], reduce congestion [62], and enhance energy efficiency [58]. AI-based systems optimize 

traffic signal timing [57]-[60], predict non-recurring traffic events, and enable proactive management 

strategies [65]-[67]. Innovations like truck platooning have shown potential fuel savings of up to 10% and 

reduced delivery costs by 30% [70]. As an example, the Florida Department of Transportation (FDOT) 

implemented AI-powered traffic management tools to optimize signal timing along urban arterials, aiming 

to reduce peak-hour congestion. However, implementing AI in transportation operations also faces 

challenges. These include the need for accurate real-time data collection [63], proper sensor placement [64], 

and multi-objective optimization in congested areas [69], [71]. Implementation requires specialized skills, 

highlighting the need for workforce development [72]. Costs vary widely, from $300,000 for research 

projects to $1 million for larger implementations [73]-[75], with significant portions allocated to software 

development and integration [76]. 

2.4. Autonomous Vehicles 

Autonomous Vehicles (AVs) are revolutionizing transportation by integrating advanced AI methods with 

diverse data inputs [77], [78]. These inputs include cameras, LiDAR, naturalistic driving data, traffic signal 

data, social media feeds, and digital maps [79]-[81]. AVs process this information using computer vision, 
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natural language processing, reinforcement learning, and deep learning [82], [83]. Key applications of AVs 

encompass perception and sensor fusion [84], prediction and planning [85], and human-machine interaction 

[86]. The potential benefits are significant, including improved safety, enhanced mobility, reduced 

congestion, and increased fuel efficiency [87], [88]. The Illinois Department of Transportation (IDOT) has 

launched the “Autonomous Illinois” initiative, establishing AV pilot zones through public-private-

academic collaboration to support real-world autonomous vehicle testing. Challenges in AV technology 

include cybersecurity threats [89], job displacement concerns, and technical issues like performance in 

adverse weather [90], [91]. Legal and regulatory hurdles, particularly regarding data privacy and liability, 

also persist [92]-[100]. 

2.5. Digital Twins 

Digital Twins (DTs) in transportation are virtual replicas of physical assets, systems, or processes that use 

real-time data to simulate, analyze, and optimize operations [77], [78]. They integrate various data inputs 

with AI methods (e.g., computer vision, natural language processing, reinforcement learning, deep learning, 

statistical learning, and machine learning algorithms) [79]-[82]. Key applications of DTs include safety 

analysis, urban planning, infrastructure management, transportation system simulation, vehicle and 

pedestrian tracking, and traffic management [83]-[85]. The benefits of DTs are significant. For example, 

DTs address the limitations of traditional surrogate safety measures by enabling high-fidelity, real-time 

replication of traffic environments, which allows for dynamic scenario testing, continuous safety evaluation, 

and proactive risk identification. This enhanced capability to simulate and analyze safety-critical events in 

a virtual setting holds the potential to significantly reduce crashes [86]. For bridge monitoring, DTs lead to 

cost savings by reducing unnecessary bridge replacements and increasing mobility [87]. In waterway 

systems, DTs contribute to improved operational efficiency and reduced transportation delays [88], [89]. 

DTs offer potential long-term savings through reduced site visits, improved maintenance procedures, and 

enhanced decision-making capabilities [90], [91]. A notable example includes the Washington State 

Department of Transportation (WSDOT), which partnered with the University of Washington to develop a 

digital twin of the I-90 floating bridge, achieving enhanced structural monitoring and an estimated return 

on investment of up to 2000%. However, implementing DT workflows faces challenges in procurement 

costs [92]. Moreover, the variability in material properties for infrastructure modeling, limitations in data 

availability, and bureaucratic delays in sensor installation are other obstacles to implementing DTs [93]-

[96]. 

2.6. Generative AI 

Generative AI creates content like text, images, and simulations based on user input, driven by advanced 

deep learning methods [101]-[103]. It has promising applications in transportation, particularly in 
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autonomous driving, traffic prediction, etc. [104], [105]. In autonomous driving, Generative AI helps create 

realistic driving scenarios for training autonomous vehicles, improving their decision-making in complex, 

real-world situations [106]. Additionally, Generative AI enhances traffic simulations by modeling vehicle 

behavior and rare events, which are useful for urban planning and testing autonomous vehicles [107]. The 

California Department of Transportation (Caltrans) is piloting the use of Generative AI to support document 

summarization and internal report generation, streamlining workflows and enhancing knowledge 

management efficiency. However, implementing Generative AI in transportation comes with challenges. 

These include integrating diverse data sources, handling incomplete or sparse data, and ensuring real-time 

decision-making [108]. There are concerns about technology’s vulnerability to adversarial attacks, which 

could affect safety [109]. Despite these challenges, Generative AI has the potential to transform the 

transportation industry by improving traffic management, simulation, and decision-making processes [110], 

[111]. 

The literature review above has identified six key domains, including Transportation Asset Management, 

Transportation Safety, Transportation Operations, Autonomous Vehicles, Digital Twins, and Generative 

AI, which are the focus areas for current and emerging AI applications in transportation and are the basis 

for the survey conducted in this report. By synthesizing recent research across these fields, the review 

provides a foundational understanding of the opportunities and challenges associated with AI adoption and 

exemplifies some of the specific AI in transportation projects in different state DOTs. These insights will 

directly inform subsequent project phases. In particular, the findings will guide the design of the stakeholder 

survey and follow-up interviews in further research tasks, ensuring that data collection efforts are grounded 

in evidence and aligned with practical implementation considerations. The literature review thus serves as 

a critical step in aligning academic research with real-world needs and shaping a data-driven roadmap for 

AI integration in transportation systems. 
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3. SURVEY DESIGN 

To assess the current practices, benefits, and challenges associated with the adoption of AI in the 

transportation sector, a structured survey was developed and distributed among professionals across various 

transportation-related agencies. The survey has the following objectives: 

● To understand the current state of AI applications in transportation practices. 

● To evaluate practitioner perceptions of AI-related benefits and challenges. 

● To identify gaps in data availability, technical expertise, infrastructure, and institutional capacity. 

● To provide recommendations for facilitating the broader adoption of AI technologies for WisDOT. 

The survey was designed to collect both quantitative and qualitative data from practitioners actively 

involved in AI-related projects or policy-making processes, enabling the research team to identify common 

application areas, data management practices, infrastructure needs, and perceived implementation barriers. 

The target population included public-sector transportation professionals, planners, engineers, IT specialists, 

and decision-makers across local, regional, and state agencies.  

The survey comprised questions across three parts: (1) basic information, (2) AI application in 

transportation, and (3) cost and workforce development. It was designed with mixed-format questions that 

allowed for both quantitative analysis and qualitative insights, enabling respondents to provide detailed 

feedback on AI applications, organizational practices, and recommendations for WisDOT. More details 

about the questionnaire can be found in Appendix B. All survey data were stored securely in university-

managed systems, and the project was conducted following IRB-exempt protocols for minimal-risk 

research. 

This survey was jointly developed by the University of Wisconsin–Madison and the University of 

Wisconsin–Milwaukee, under the sponsorship of WisDOT, and was administered online via Qualtrics and 

disseminated through a combination of direct email invitations, professional network referrals, and targeted 

outreach through transportation and AI-related forums. The survey remained open for responses from 

February 11, 2025, with further follow-up interviews from March 31 to April 25. Participants were 

informed of the voluntary nature of the study, and no personally identifiable information was required 

unless they chose to provide contact information for follow-up. The survey collected responses from 

participants in 17 states, as shown in Figures 3.1 and 3.2. These responses provided a broad cross-section 

of perspectives and practices from a geographically and institutionally diverse sample. 

 



   
 

8 
 

 

Figure 3.1 Location Distribution of Respondents by Academic Organizations 

 
 

 

Figure 3.2 Location Distribution of Respondents by State DOTs 
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4. DATA ANALYSIS 

4.1. Respondent Profile and AI Readiness 

4.1.1 Survey Response Overview 

The survey collected a total of 155 responses. Of these, 34 respondents completed the entire survey, 13 

participants completed more than half of the survey questions, yielding sufficient data for analysis to 

support the key findings of this study. Figure 4.1 suggests that 75.0% of respondents identified as male, 

while 19.7% identified as female. 

 

Figure 4.1 Gender Distribution of Survey Respondents 

As shown in Figure 4.2, the 36-50 age group represents the largest segment at 42.1% of respondents. The 

second largest group is the 25-35 age bracket, accounting for 31.6% of participants. Older age groups make 

up smaller proportions of the sample, with respondents aged 51-60 representing 9.2% and those over 60 

constituting 10.5%. The youngest demographic, respondents under 25, accounts for only 1.3% of the sample. 

This age distribution shows that most transportation professionals engaged with AI implementation are in 

their middle career stages (36-50 years), with significant representation from early-career professionals (25-

35 years) as well. 

 

Figure 4.2 Age Distribution of Survey Respondents 

For education levels, as shown in Figure 4.3, doctoral degree holders constituted the largest group at 47.4%, 

followed by those with bachelor’s degrees and master’s degrees. This educational distribution might 

suggest that professionals engaged with AI applications in transportation tend to possess advanced 
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academic credentials, with nearly half holding doctoral degrees. The combined percentage of bachelor’s 

and master’s degree holders indicates that undergraduate and graduate education serve as a fundamental 

qualification for practitioners in this field. 

 

Figure 4.3 Educational Distribution of Survey Respondents 

Regarding professional experience, Figure 4.4 illustrates the distribution of respondents’ work experience. 

51.3% of participants reported being in their current roles for less than 5 years, which suggests a relatively 

high proportion of professionals who have recently entered their positions. Longer-tenured professionals 

are less represented, with only 3.9% having worked in their current positions for 16-20 years and 5.3% for 

more than 20 years. This tenure distribution might reflect the relatively recent integration of AI technologies 

into transportation fields. 

 

Figure 4.4 Professional Experience Distribution of Survey Respondents 

Geographically, the respondents represent a diverse cross-section of transportation organizations across the 

United States. As shown in Figure 4.5, the Northeast region accounts for the largest proportion at 33.8%, 

followed by the South (28.6%), Midwest (20.8%), and West (16.9%). This geographic distribution provides 

a balanced perspective on AI implementation in transportation across different regional contexts, each with 

its own unique infrastructure challenges, regulatory environments, and technological adoption patterns. 
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Figure 4.5 Regional Distribution of Survey Respondents 

4.1.2 Professional Background of Respondents 

 

Figure 4.6 Distribution of Respondents across Organization Types 

 
Figure 4.7 Distribution of Respondents across Different Functional Roles 

As shown in Figure 4.6, most respondents were affiliated with academic or research institutions, followed 

by state departments of transportation. Other organizational types represented include technology providers, 

professional committees, local agencies, and federal agencies. Figure 4.7 illustrates the distribution of 
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respondents across different functional roles within the transportation sector. “Research” emerges as the 

predominant functional area, accounting for nearly half of all respondents. “Planning and Design” functions 

represent the second largest category at 16.9%. Operations (6.5%), “Maintenance and Infrastructure” 

(5.2%), Safety and Enforcement” (3.9%), and “Policy and Administration” (2.6%) comprise the remaining 

functional categories.  

4.1.3 AI Experience Levels 

According to the survey responses, 86.8% of respondents reported having been involved with AI-related 

applications in their professional capacity. Among those with AI experience, the distribution of experience 

duration is particularly revealing (Figure 4.8). 70.8% reported having less than five years of experience 

working with AI technologies. 26.2% of respondents indicated medium-term experience ranging from five 

to 15 years, while only a small fraction (3.1%) reported extensive experience exceeding 15 years. 

 

Figure 4.8 AI Experience Distribution of Respondents 

This pattern strongly suggests that AI adoption in the transportation sector is a relatively recent phenomenon. 

The concentration of professionals with less than five years of experience aligns with the broader timeline 

of AI advancement and application in transportation contexts, which has accelerated significantly in recent 

years. 

4.1.4 AI Training and Professional Development 

The survey results reveal significant gaps in AI-related training and professional development across the 

transportation sector. As illustrated in Figure 4.9, nearly half of all respondents (48.3%) reported receiving 

no formal AI-related training whatsoever. Among those who had received some form of AI training, the 

distribution across different training categories is notably uneven. Approximately one-third of respondents 

reported receiving training focused on AI introduction and relevant theories, indicating a basic level of 

conceptual familiarity. However, only 17.2% of respondents reported receiving training in each of three 

critical categories: AI tools and platforms, data ethics and security, and other specialized AI domains. 
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Figure 4.9 AI-related Training and Professional Development across Transportation Sectors 

This distribution highlights a concerning imbalance between theoretical knowledge and practical 

implementation skills. While a moderate proportion of transportation professionals have been exposed to 

foundational AI concepts, far fewer have received the specialized technical and essential ethical training 

for effective implementation. The limited training in AI tools and platforms is also noteworthy, as it may 

constrain organizations' ability to operationalize AI solutions even when conceptual understanding exists. 

Lastly, there is a significant gap in ethics and security training that warrants special attention, given the 

increasing concerns about privacy, bias, and security vulnerabilities in AI systems. As transportation 

agencies deploy increasingly sophisticated AI applications that interact with the public and critical 

infrastructure, ensuring ethical implementation becomes paramount. These findings strongly suggest the 

need for more comprehensive, structured AI training programs within transportation organizations. 

Effective professional development strategies should balance theoretical foundations with practical 

implementation skills and ethical considerations, creating a workforce equipped to harness AI's potential 

while mitigating associated risks. 

4.1.5 Perceived Effectiveness of AI Training 

Beyond the availability of AI training programs, the survey also explored perceptions of training 

effectiveness among those respondents who indicated they had received such training. The results, depicted 

in Figure 4.10, reveal a clear trend toward moderate satisfaction rather than strong endorsement. Among 

respondents who had received AI training, the largest group (34.5%) rated their experience as moderately 

effective (3 on a 5-point scale). However, a substantial share expressed concerns, with 31.0% rating their 

training as somewhat ineffective (2) and 17.2% as entirely ineffective (1). In contrast, relatively few 

participants rated their training as highly effective: only 10.3% gave a score of 5, and 6.9% rated it as 4. 

These results suggest that among those who have received AI training, many found the programs only 

moderately effective, with nearly half reporting negative experiences. Although a small portion expressed 

high satisfaction, the overall distribution points to substantial room for improvement in current efforts. 
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Figure 4.10 Rating Distribution of Effectiveness of AI Training 

4.1.6 AI Skills Gap Analysis 

To better understand the specific areas where transportation professionals feel underprepared for AI 

implementation, the survey asked respondents to identify gaps between their current AI skills and those 

needed for effective application. The results, shown in Figure 4.11, reveal perceived skill deficiencies. 

 

Figure 4.11 Selection Distribution of Gap between Current and Needed Skills for AI Applications 

Technical skills emerged as the most widely acknowledged gap, with 73.3% of respondents identifying this 

as an area of deficiency. This finding aligns with the previously observed limited availability of training in 

AI tools and platforms, suggesting a significant mismatch between the technical competencies required for 

AI implementation and the current workforce capabilities. Closely related, hands-on experience with AI 

applications was identified as the second most prevalent gap. This finding is particularly noteworthy given 

the earlier observation that 70.8% of respondents have less than five years of AI experience, reinforcing the 

conclusion that many transportation professionals are still in the early stages of practical AI implementation. 

Data management skills represented another significant area of concern, with half of all respondents 

identifying this as a skills gap. This finding is especially relevant given the data-intensive nature of AI 

applications in transportation, where effective collection, cleaning, integration, and governance of diverse 
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data sources is often a prerequisite for successful implementation. By contrast, respondents were somewhat 

less likely to identify gaps in their understanding of AI’s broader implications. Just 36.7% noted 

deficiencies in understanding AI’s social impacts, while a similar proportion (33.3%) identified gaps in 

legal and ethical knowledge. This distribution of responses reveals a critical insight: the most pressing skill 

gaps in the transportation sector relate to practical implementation rather than conceptual understanding.  

These findings strongly suggest that workforce development initiatives should prioritize practical, hands-

on training focused on technical skills and real-world applications, complemented by foundational data 

management competencies. Bridging these skills gaps will be essential for transportation agencies seeking 

to realize the full potential of AI technologies in addressing sector challenges. 

4.1.7 Recommendations for AI Readiness 

The survey also solicited respondents’ recommendations for specific actions that transportation agencies, 

particularly WisDOT, should take to enhance their AI readiness. The results, depicted in Figure 4.12, 

demonstrate a strong consensus around several key priority areas. 

Providing AI-focused training programs emerged as the most widely endorsed recommendation, with 77.8% 

identifying this as a priority action. This finding directly addresses the previously identified gaps in both 

training availability and effectiveness. Two strategic priorities received equal endorsement from 

respondents (66.7% each): developing AI-specific policies and establishing robust data management 

systems. The strong support for policy development reflects recognition that effective AI implementation 

requires clear governance frameworks addressing procurement, deployment, maintenance, and evaluation 

of AI solutions. Similarly, the emphasis on data management systems acknowledges that high-quality, well-

organized data is the foundation upon which successful AI applications are built. 

 

Figure 4.12 Distribution of AI-related Training Programs 
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Addressing security and ethical concerns ranked as the fourth most endorsed recommendation. This level 

of support indicates growing awareness of the potential risks associated with AI deployment in 

transportation contexts, where applications may impact public safety, privacy, and equitable service 

delivery. Enhancing technical infrastructure received support from 48.1% of respondents. 

Collectively, these recommendations reveal a strong consensus on the foundational elements required for 

transportation agencies to advance their AI readiness. Rather than focusing narrowly on specific AI 

applications or technologies, respondents emphasized the importance of building organizational capacity 

through training, governance frameworks, and data systems. This suggests that transportation professionals 

recognize AI readiness as a multifaceted challenge requiring coordinated efforts across technical, 

organizational, and policy dimensions. 

4.2. Survey Topic 

This subsection presents additional analyses on selected topics that synthesize responses across multiple 

survey questions. These analyses aim to uncover deeper patterns and relationships that may not be evident 

from individual question results. 

4.2.1 Quality and Challenge of Different Data Types 

This topic investigates the perceived data quality and preparation difficulty of four common data types used 

in AI-based transportation applications. The four common data types include 1) vision data, 2) text data, 3) 

map data, and 4) traffic data. For data preparation difficulties, we evaluate four dimensions, which are data 

collection, data cleaning, data labeling, and data management. 

(1) Findings from Survey Results 

 

Figure 4.13 Comparison of Difficulty for Different Data Types 
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As shown in Figure 4.13, survey results indicate that map data and traffic data are considered high-quality 

and low-difficulty sources. Their structured nature and integration within existing GIS and ITS systems 

make them the most reliable and cost-effective for AI applications. These data types are readily available 

through traffic sensors, historical datasets, and mapping services, contributing to their consistent usability. 

In contrast, text data, especially that originating from social media or incident narratives--was rated as 

having the lowest overall quality due to its inherent noise, informal language, and unstructured format. 

Among the four difficulty dimensions, data cleaning was considered the most challenging aspect for text 

data. The presence of misspellings, abbreviations, sarcasm, and contextually ambiguous expressions makes 

it particularly difficult to process. As a result, preparing text data requires advanced NLP techniques, 

domain-specific filters, and often manual verification to extract reliable features. 

Vision data, on the other hand, is recognized for its high potential value in transportation applications such 

as object detection, traffic incident recognition, and behavior prediction. However, it poses significant 

challenges in terms of data labeling. Annotating vision data demands fine-grained, often frame-by-frame 

labeling, which is time-consuming and requires significant domain expertise--especially when dealing with 

complex traffic scenes or safety-critical events. While data collection (via traffic cameras or drones) and 

cleaning are generally manageable, managing large video files and ensuring annotation consistency across 

datasets introduce additional burdens. 

In summary, Map and Traffic data are seen as low-effort, high-value inputs, whereas text and vision data, 

though powerful, require significant preparation efforts. These insights underscore the importance of 

targeted investments in data readiness for successful AI deployment. 

(2) Discussions on Future Development 

Based on the findings above, we provide the following strategic recommendations to assist WisDOT in 

enhancing data management and development: 

● Enhance data cleaning through NLP tooling: Develop transportation-specific NLP pipelines to 

clean and structure incident reports, traveler feedback, and social media text. Collaborate with 

academic institutions and private vendors to co-develop pretrained language models for 

transportation context. 

● Promote fusion of high-quality map and traffic data: Integrate map and real-time traffic data into 

predictive AI models for applications such as incident forecasting, congestion management, and 

dynamic routing. Couple these with existing ITS infrastructure to improve real-time operational 

decision-making. 
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● Address rural data equity and infrastructure gaps: Expand data acquisition infrastructure in rural 

and underserved regions to balance spatial data availability and avoid urban-only AI deployment 

bias. Utilize mobile sensing platforms or drones to extend coverage and feed real-time data from 

sparsely monitored areas. 

4.2.2 Work Experience and Satisfaction with AI 

(1) Findings from Survey Results 

This section explores the relationship between years of AI-related work experience and satisfaction with 

performance across six AI application areas in the transportation domains, which are Asset Management, 

Transportation Safety, Traffic Operations, Digital Twins, Autonomous Vehicles, and Generative AI. As 

employees gain experience, they may have different perspectives on the same things, which can help DOT 

implement targeted measures for employees with different ranges of work years. 

As illustrated in Figure 4.14, there is a significant correlation between work experience and satisfaction 

levels. Respondents with more than 10 years of experience (11-15 years and >15 years group) reported 

notably higher satisfaction with traditional and well-established AI applications, particularly in Asset 

Management. Specifically, satisfaction scores in this category increased from 1.08 (for <5 years group) to 

4.00 (for >15 years group), suggesting that seasoned employees may better recognize the tangible benefits 

of AI in infrastructure lifecycle planning and resource optimization. 

 

Figure 4.14 Effect of Work Year on Satisfaction in Different Application Areas 

In contrast, less experienced employees (<5 years group) exhibited more evenly distributed satisfaction 

across all application areas, including emerging technologies such as Generative AI and Autonomous 
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Vehicles. This suggests a greater openness and optimism toward novel or experimental AI domains among 

early-career respondents, possibly due to their academic exposure or technological fluency. 

Interestingly, the 5-10 years group reported overall lower satisfaction scores across nearly all domains, with 

minimal variation between applications. This dip may reflect transitional career stages where expectations 

are high, yet direct control over AI implementation or evaluation remains limited. For instance, this group 

rated Transportation Safety and Autonomous Vehicles particularly low (0.60 and 0.40), potentially 

indicating a mismatch between expectations and observed system maturity. 

(2) Discussions on Future Development 

The findings highlight that employee satisfaction with AI applications in transportation varies significantly 

by work experience, which offers important guidance for designing differentiated collaboration strategies. 

We encourage WisDOT to adopt the following targeted approaches: 

● Task assignment based on experience strengths: (a) Assign highly experienced employees (>10 

years) to lead deployment and quality assurance in mature AI domains such as Asset Management 

and Traffic Operations. (b) Involve the 5-10 years cohort in cross-domain coordination roles, 

bridging technical implementation with operational needs, while gradually building their applied 

experience and confidence. (c) Engage early-career employees (<5 years) in pilot projects and 

experimental applications like Generative AI and digital twins, where innovation, adaptability, and 

fresh technical perspectives can accelerate development. 

● Differentiated AI application training for different levels of employees: (a) For senior employees: 

emphasize strategic oversight, ethical governance, and risk-informed decision-making in AI system 

deployment. (b) For mid-career employees: focus on hands-on modeling, interfacing with AI tools, 

and project implementation case studies. (c) For junior employees: provide foundational AI literacy, 

data pipeline skills, and application-specific toolkits to enable rapid engagement. 

● Cultivate inclusive AI development culture: Foster an internal culture that values diverse 

experience perspectives in AI decision-making. Encourage inclusive feedback loops, ensuring that 

insights from each career stage help shape workflow design and user satisfaction metrics. 

4.2.3 AI Experience Gap and Satisfaction 

(1) Findings from Survey Results 

This topic examines how employees with different balances between work year and AI work experience 

evaluate satisfaction with AI applications across six transportation domains: Asset Management, 

Transportation Safety, Traffic Operations, Digital Twins, Autonomous Vehicles, and Generative AI. 
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Respondents were divided into two groups, Group 1 includes employees whose work experience 

significantly exceeds their AI usage experience (a gap of more than five years), representing a cohort with 

domain knowledge but limited exposure to AI tools. Group 2 includes Employees whose work experience 

closely matches their AI usage experience, typically more integrated into AI-enhanced workflows. 

The difference in satisfaction levels between the two groups can be a good indicator of how employees 

perceive the application of AI in different areas, including reliability and applicability. 

As illustrated in Figure 4.15, clear satisfaction differences emerge between these two groups across the 

application areas. In Asset Management and Transportation Safety, satisfaction levels between the two 

groups are nearly equivalent, suggesting that these fields benefit from more mature, well-integrated AI tools. 

Group 1 employees --despite limited AI familiarity--likely perceive these tools as credible due to their 

widespread institutional adoption and alignment with established workflows. 

However, substantial gaps appear in the remaining four areas. Specifically, in Traffic Operations and 

Generative AI, Group 2 reports significantly higher satisfaction, while Group 1 shows clear skepticism or 

disengagement. In Digital Twins and Autonomous Vehicles, the gap persists, albeit to a lesser extent. 

These results suggest that Group 1 may experience a “trust gap” regarding newer or less mature AI 

technologies. Their reliance on traditional engineering and planning methods may lead to greater caution 

or lower perceived utility when encountering emerging AI-driven approaches. Conversely, Group 2 

employees, often more digitally native or technologically fluent, display greater comfort with AI integration 

and more positive attitudes toward its evolving capabilities. 

 

Figure 4.15 Comparison Between Employees with Different Work Years and AI Work Experience 
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(2) Discussions for Future Development 

To ensure equitable and effective adoption of AI technologies across the workforce, the following 

recommendations are proposed for WisDOT: 

● Bridge the trust gap through use-case exposure: Organize field demonstrations and data-driven case 

studies that showcase the performance of AI in operations, digital twins, autonomous vehicles, and 

generative AI. Highlight practical outcomes and real-world benefits to help experienced 

professionals see the tangible value of emerging AI applications. 

● Develop dual-track learning paths: For Group 1, focus training on AI interpretation, validation 

techniques, and hybrid approaches that blend traditional methods with AI support. For Group 2, 

offer advanced AI development training and opportunities to lead pilot programs in novel fields 

such as generative design and simulation-based control. This means that grouping employees based 

on AI experience is effective, which will make further AI training more valuable. 

● Adapt AI system interfaces to user familiarity: Tailor the usability and transparency of AI systems 

to support diverse user profiles. For example, provide explainable AI features and simplified 

dashboards for experienced engineers less accustomed to AI models. 

4.2.4 Potential Benefit and Expected Timeframe of Different AI Applications 

(1) Findings from Survey Results 

This section evaluates how respondents perceive the potential benefit and expected timeframe across six 

key AI application areas in transportation domains, including Asset Management, Transportation Safety, 

Traffic Operations, Digital Twins, Autonomous Vehicles, and Generative AI. Potential benefits are 

measured through a five-point scale, with higher scores representing more substantial returns. The expected 

timeframe is divided into short, medium, and long term, representing 1-3 years, 4-7 years, and 8+ years, 

respectively. Areas where potential benefits and expected timeframe match should be the focus of WisDOT 

development, while for areas where the two metrics are out of balance, attempts need to be made to explore 

new research approaches. These findings will be particularly critical in resource allocation and roadmap. 

As shown in Figure 4.16, the average potential benefit remains consistently high across all domains (ranging 

from 3.9 to 4.3), indicating general optimism about the transformative potential of AI in transportation. 

However, the expected timeframe for realizing these benefits varies significantly by application, revealing 

important insights into development feasibility, adoption readiness, and return on investment cycles. 

Notably, Autonomous Vehicles domain exhibits a disproportionately long expected timeframe despite a 

moderate benefit rating (with an average of 3.95). This mismatch suggests respondents perceive AV-related 
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AI as promising but not yet practical, likely due to high R&D costs, regulatory hurdles, and deployment 

complexity. In contrast, domains such as Asset Management and Transportation Safety receive high benefit 

ratings (with an average larger than 4.1) and short-to-medium expected timeframes, reflecting greater 

maturity of existing AI solutions, better integration with current workflows, and faster realizable value. 

 

Figure 4.16 Potential Benefits and Expected Timeframe of Different AI Application Areas 

Traffic Operations, Digital Twins, and Generative AI fall in the mid-spectrum. Although Generative AI 

shows relatively high perceived benefit, it is also associated with a shorter timeframe, suggesting that the 

industry sees this as an emerging but rapidly deployable technology, likely due to the increasing availability 

of user-friendly tools and cloud-based platforms. 

(2) Discussions on Future Development 

To strategically prioritize AI deployment across functional areas, WisDOT should consider the following 

insights and actions: 

● Adopt a dual-lens evaluation framework: Impact vs. Readiness: Use a benefit-timeframe matrix to 

categorize AI applications by strategic fit: Promising investments: High benefit, short or medium 

timeframe, training and development programs should be in place (e.g., asset management, 

generative AI). Long-horizon innovation: Moderate benefit, long timeframe, consider changing 

research methodology or requesting resources from research institutions (e.g., autonomous 

vehicles). 
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● Accelerate implementation in high-return, near-term areas: Prioritize funding and talent for AI-

enabled asset management and safety systems, where tools are proven and benefits can be captured 

early. Scale deployment through integration with existing ITS and infrastructure management 

projects. 

● De-risk long-term AI investment through phased pilots: For Autonomous Vehicle technologies, 

adopt a modular, phased approach focusing first on traffic simulations that have a small cost and 

risk factor, along with small, controlled environment experiments to demonstrate value over time. 

Collaborate with research institutions and OEMs to share costs and reduce uncertainty. 

4.2.5 Benefits and Risks of AI in Different Application Domains 

To evaluate the perceived benefits and risks associated with various AI application areas in transportation, 

we utilized two metrics: the Potential Benefit Score and the Potential Risk Score. Both scores range from 

1 to 5, with higher values indicating greater perceived benefits or risks, respectively. Furthermore, to 

visualize the tradeoff between benefits and risks, we employed a bubble chart representation, where each 

point corresponds to a specific combination of benefit and risk scores, and the size of each bubble reflects 

the number of responses. This approach enables a nuanced interpretation of how benefits and risks are 

jointly perceived within each AI domain, supporting more informed discussions and strategic planning. 

(1) Transportation Asset Management 

Transportation asset management is considered one of the most promising areas for AI integration. The 

results of this analysis support that perception, as illustrated in Figure 4.17. 

 

Figure 4.17 Benefits and Risks Analysis on Transportation Asset Management 
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Most respondents assigned very high benefit scores to AI in asset management, indicating strong confidence 

in its potential to optimize maintenance scheduling and predict infrastructure failures. The dominance of 

high-benefit responses, especially in conjunction with larger bubble sizes (five respondents rated benefit=5 

and risk=4), demonstrates a consolidated belief in the practical value and scalability of AI in this mature 

and data-rich field. However, despite optimism, the risk scores are non-negligible. A significant portion of 

respondents placed AI in asset management within the high-risk zone (risk>3). This likely reflects concerns 

over system reliability, data integration challenges, lack of interpretability in predictive models, and the 

need for human oversight in infrastructure-related decisions. 

(2) Transportation Safety 

Transportation safety is widely recognized by researchers and practitioners as a high-priority domain for 

the integration of AI technologies, given its direct impact on public well-being and policy initiatives. The 

analysis results, as shown in Figure 4.18, further reinforce this perception. The analysis results reveal dense 

clustering around (benefit=5, risk=3), (benefit=4, risk=3), and (benefit=4, risk=2), suggesting that most 

respondents strongly believe in the substantial benefits AI can deliver in enhancing transportation safety. 

These benefits may include improved incident detection, predictive crash modeling, real-time hazard 

warnings, and enhanced situational awareness for operators. 

 

Figure 4.18 Benefits and Risks Analysis on Transportation Safety 

Importantly, most points lie well above the diagonal line, which indicates that perceived benefits 

consistently outweigh perceived risks for AI applications in this domain. Compared to other areas, 

transportation safety emerges as one of the most trusted fields for AI deployment, reflecting growing 

reliability in mature technologies. Nevertheless, a moderate level of perceived risk remains below the 
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diagonal line, likely linked to concerns about data privacy challenges and model transparency. However, 

the relatively lower positioning of risk compared to benefit suggests that such concerns are not seen as 

insurmountable barriers. 

(3) Traffic Operations 

Transportation operations, encompassing traffic control, congestion management, and incident response, 

represent a critical application area for AI integration. The results presented in Figure 4.19 highlight a 

generally optimistic view about the role of AI in this domain. 

 

Figure 4.19 Benefits and Risks Analysis on Transportation Operations 

The analysis results show a strong concentration at the (benefit=5, risk=3) position, with many other 

responses located above or near the diagonal line. This pattern indicates that respondents widely perceive 

AI as delivering high benefits for transportation operations, particularly in enhancing efficiency, real-time 

responsiveness, and system reliability. The dense clustering around the highest benefit scores suggests a 

strong stakeholder confidence that AI technologies, such as predictive traffic modeling and adaptive signal 

control, can significantly improve operational performance. 

While the perceived risk is moderate (centered around risk=3), it is generally viewed as manageable relative 

to the expected benefits. Risks may relate to system integration complexity, data quality issues, and 

cybersecurity vulnerabilities. However, the fact that most points stay near or above the benefit-risk diagonal 

line indicates that these concerns do not outweigh the perceived advantages. 
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(4) Digital Twins 

Digital Twins, which create dynamic virtual models of physical transportation systems, have attracted 

growing attention as a transformative application of AI. The analysis results, as shown in Figure 4.20, reveal 

a generally favorable perception of AI’s role in this domain. The analysis results show that most responses 

stay above the diagonal line, with concentrations at (benefit=5, risk=3) and (benefit=4, risk=3). This 

distribution indicates that respondents see Digital Twins as offering high benefits with manageable levels 

of risk. Key perceived benefits likely include enhanced infrastructure monitoring, predictive maintenance, 

scenario simulation for traffic planning, and real-time system optimization. 

The consistent clustering above the diagonal suggests that respondents hold a positive outlook toward 

Digital Twin applications. They recognize the power of AI-enhanced simulation and prediction tools to 

improve decision-making and resource allocation without perceiving excessive risk. Identified risks, below 

the diagonal line, may stem from model fidelity issues, data integration complexity, and the challenges of 

keeping virtual representations synchronized with real-world conditions. 

 

Figure 4.20 Benefits and Risks Analysis on Digital Twins 

 
 
 

(5) Autonomous Vehicles 

Autonomous Vehicles (AVs) represent one of the most high-profile and transformative areas for AI 

applications in transportation. However, their development has also brought with it enormous complexity 
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and uncertainty, particularly regarding safety, regulation, and public trust. The survey results in Figure 4.21 

reflect this duality, but also reveal a notable distinction compared to other application areas. 

Specifically, the analysis shows a dense concentration of responses at the (benefit=5, risk=5) coordinate, 

underscoring respondents’ recognition of both the extraordinary potential and the significant risks of AV 

technologies. Anticipated benefits include enhanced traffic safety, reduced congestion, improved mobility 

access, and increased operational efficiency. However, these are tempered by concerns over system 

reliability, cybersecurity threats, legal liabilities, and challenges with public acceptance. 

Unlike other domains where perceived benefits tend to outweigh or at least balance perceived risks, AV-

related responses more frequently fall below the diagonal, suggesting that many respondents see risk 

exceeding benefit. This trend reflects a more cautious and measured outlook: while stakeholders 

acknowledge the long-term promise of AVs, they also express heightened concern about unresolved 

barriers that could delay or even compromise their deployment. The distribution highlights that realizing 

the transformative potential of AVs will demand sustained technological innovation, robust policy 

frameworks, and proactive stakeholder engagement. 

 

 

Figure 4.21 Benefits and Risks Analysis on Autonomous Vehicles  

(6) Generative AI 

Generative AI, including technologies such as large language models (LLMs) and generative design tools, 

has recently gained traction in transportation research and operations. However, perceptions of its maturity 

and risk profile remain mixed. The analysis results in Figure 4.22 highlights these nuances. 



   
 

28 
 

The analysis results indicate that responses are clustered around high benefit scores (particularly 5), coupled 

with moderate-to-high risk scores (ranging from 2 to 4). While most respondents acknowledge the strong 

potential of generative AI for accelerating documentation, scenario generation, and design automation, 

there is greater dispersion in risk perception compared to more established domains like Transportation 

Asset Management or Safety. 

This dispersion suggests that respondents view generative AI as promising but still relatively immature, 

with concerns tied to model reliability, explainability, data bias, and the risk of producing inaccurate or 

inappropriate outputs. Respondents who gave lower risk scores were likely to be optimistic about current 

advancements in model fine-tuning and governance frameworks. Other respondents who gave higher risk 

scores emphasized caution, particularly in safety-critical or policy-sensitive contexts. 

 

Figure 4.22 Benefits and Risks Analysis on Generative AI 

(7) Tradeoff Between AI Benefits and Risks 

The average potential benefit scores and potential risk scores for each AI application domain are 

summarized in Table 4.1 and analyzed as a whole. In this subsection, they will be analyzed to explore the 

tradeoff between AI benefits and risks. 
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Table 4.1 Summary about Benefits and Risks for Each Application 

Applications Potential Benefit Score Potential Risk Score 

Transportation Asset Management 4.17 2.84 

Transportation safety 4.28 3.37 

Transportation Operations 3.91 3.33 

Digital Twins 4.03 2.76 

Autonomous Vehicles 3.95 4.15 

Generative AI 4.32 3.11 

 

After analyzing the perceived benefits and risks associated with AI applications across six major 

transportation domains, a consistent pattern emerges, as illustrated in Figure 4.23. Most responses are 

clustered in the high-benefit, moderate-risk quadrant. This pattern indicates that transportation 

professionals generally view AI as a highly promising tool capable of delivering substantial improvements 

in areas such as asset management, safety, operations, digital twins, and generative design. 

However, the survey also reveals critical exceptions to this trend. Notably, the Autonomous Vehicles 

domain stands out as the only domain in which perceived risks exceed perceived benefits, breaking the 

broader pattern observed in other areas. In fact, AVs were rated as the riskiest application area overall. This 

reflects a clear recognition among stakeholders that while AVs offer transformative potential, they also 

carry significant unresolved challenges, including safety, system reliability, and cybersecurity. Generative 

AI also received elevated risk scores, though still accompanied by strong benefit expectations. These 

exceptions highlight the need for targeted risk mitigation strategies in these emerging fields before broader 

deployment can be achieved. 
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Figure 4.23 Tradeoff Analysis Between AI Benefits and Risks 

Overall, the perception of respondents on the benefits and risks of AI shows enthusiasm for continued 

development and caution about potential challenges. While there is strong enthusiasm for the transformative 

potential of AI technologies, there is also clear recognition of the need for risk management frameworks, 

ethical oversight, and phased, evidence-driven deployment strategies. 

(8) Recommendations for Future Development 

To capitalize on the benefits of AI applications while addressing their risks, WisDOT should consider the 

following strategic actions: 

● Implement a risk-benefit prioritization framework: Develop a formal evaluation matrix that scores 

proposed AI projects based on expected benefit magnitude and associated risk complexity. 

Prioritize projects in the high-benefit, moderate-risk quadrant for near-term investment, while 

allocating exploratory funding for high-benefit, high-risk innovations under controlled conditions. 

● Phase deployment to align with maturity levels: For more mature applications (e.g., asset 

management, safety), move toward full-scale deployment. For less mature but high-potential areas 

(e.g., autonomous vehicles, generative AI), adopt a phased pilot-testing approach, building 

evidence of performance and addressing risks incrementally. 

● Establish robust AI governance and monitoring systems: Design and implement AI governance 

frameworks that ensure transparency, accountability, and ethical use across all AI deployments. Set 

up continuous monitoring mechanisms to assess evolving risk profiles and adjust strategies 

accordingly. 
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By embracing a balanced, evidence-driven strategy, WisDOT can maximize the transformative impact of 

AI technologies while safeguarding public trust and ensuring system resilience. 

4.2.6 Differences in Perceptions of AI Benefits and Risks by Organization Type 

To better understand how institutional background may influence perceptions of AI in transportation, we 

divided respondents into two organizational categories: Public sector and academic/research institutions. 

The goal of this analysis was to examine whether these two groups differ in their views on AI applications 

across six key transportation domains, focusing on two core evaluation metrics: Benefit Score and Risk 

Score. 

The analysis proceeded in three steps. First, we compared the differences of benefit and risk scores between 

the two organization types in each AI domain, to initially analyze the central tendency and variance in 

scoring patterns. Both the benefit and risk scores are based on a five-point scale, with higher score 

representing higher benefit or risk. Second, we conducted Analysis of Variance (ANOVA) tests to assess 

whether there were any statistically significant differences in the scores between the two organizational 

groups. Given the limitations imposed by small sample size, we also used boxplots to visualize the 

distribution of benefit and risk scores for each AI domain to provide a more intuitive presentation of the 

findings. The boxplots can be found in Appendix D. 

(1) Transportation Asset Management 

As mentioned before, respondents were divided into two categories: public sector and academic/research 

institutions. By comparing respondents' perceptions of the benefits and risks of AI in asset management, 

we found noteworthy differences. 

In terms of AI benefits, both groups provided relatively high scores, with medians around 4, suggesting a 

shared recognition of the value AI can bring to infrastructure monitoring, maintenance planning, and life-

cycle optimization. More pronounced, however, is the difference in perceived AI risks. Academic and 

research institutions consistently reported higher AI risk scores, with a median nearly one full point higher 

than that of public sector respondents. This discrepancy may reflect greater familiarity among researchers 

with the technical limitations, data governance issues, and ethical concerns surrounding AI model 

deployment. In contrast, public sector respondents tended to view AI as lower-risk (medians around 2.5 

and 3.5 for public sector and academic/research institutions, respectively), potentially due to their exposure 

to well-established or vendor-supported tools, or because their evaluation frameworks prioritize operational 

stability over technical nuance. 

(2) Transportation Safety 
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In the domain of transportation safety, both public sector and academic/research respondents expressed 

consistently high perceived benefits of AI applications. Based on survey results, the median benefit scores 

for both groups are comparable, centered around 4. This suggests broad agreement across sectors on the 

positive potential of AI for safety-related functions, including incident prediction, real-time monitoring, 

and driver behavior analysis. In terms of risk perception, academic/research respondents displayed slightly 

higher risk dispersion, with a few ratings extending to the maximum score of 5. Public sector participants 

provided a narrower distribution, clustering mostly around 3.5. Despite these minor differences, the overall 

median risk scores are similar between the groups, indicating a shared awareness of technical and 

implementation challenges, such as model accuracy and data integrity. 

(3) Transportation Operations 

In the domain of transportation operations, both public sector and academic/research organizations express 

generally positive perceptions of AI benefits, though some variation is observed in benefit score distribution. 

In our survey results, the academic/research group reports a slightly higher median benefit score, with 

scores clustering tightly around 4 to 5, suggesting greater optimism regarding the capacity of AI to enhance 

traffic flow management, real-time monitoring, and incident response. By contrast, the public sector group 

shows a wider spread of benefit scores, with several responses as low as 2. This dispersion may indicate a 

more cautious or operationally constrained perspective, possibly reflecting concerns about the readiness of 

existing infrastructure to support AI-based tools. 

For perceived risks, both groups provide comparable assessments, with median risk scores centering around 

3. The range of responses is moderately broad in both cases, though outliers appear in each group. This 

suggests a shared awareness of potential risks, such as data latency, algorithm opacity, or response 

misalignment, which can affect the real-time reliability of AI systems in traffic operations. 

(4) Digital Twins 

In the domain of Digital Twins, both public sector and academic/research respondents report high perceived 

benefits, though varying dispersion. Academic institutions provided more centralized benefit scores (mostly 

around 4), suggesting consistent recognition of the value of Digital Twins in infrastructure simulation, real-

time monitoring, and decision support systems. In contrast, public sector responses are more widely 

distributed, ranging from 2 to 5, reflecting more diverse levels of familiarity or confidence in the practical 

implementation of Digital Twin technologies. Regarding risk perception, both groups again showed 

moderate to high scores, with the academic/research group reporting a slightly higher median and wider 

variance. While many respondents in both groups rated risk>3, some academic respondents provided outlier 

scores as high as 5 and as low as 1, implying a more polarized view on data integration complexity, model 
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fidelity, and governance readiness. Public sector respondents tended to cluster around the 2-3.5 range, 

suggesting a more cautious but moderate evaluation of risks. 

(5) Autonomous Vehicles 

AVs remain one of the most debated AI application areas in transportation, and the perceptions of benefit 

and risk diverge notably across organization types. As a result of our analysis, respondents from academic 

and research institutions consistently reported higher benefit scores, with a median around 4.5, compared 

to a median of 3 among public sector participants. The public sector group showed greater score dispersion, 

including several low-end ratings (1-2), suggesting stronger skepticism or limited confidence in the 

practical readiness of AVs. By contrast, academic participants expressed greater optimism, likely stemming 

from their closer proximity to technological development and simulation research. 

In terms of risk perceptions, both groups rated AV-related AI as high-risk, with median scores around 4.0 

or above (with no significant differences across organization types), and considerable clustering near the 

maximum score of 5. This consensus could reflect shared concerns about safety validation, regulatory 

uncertainty, and system accountability-issues that are central to AV deployment regardless of institutional 

affiliation. This divergence may reflect differences in exposure: academic stakeholders may be more 

familiar with the long-term promise and technical milestones of AVs, while public agencies remain cautious 

due to short-term feasibility and policy constraints. 

(6) Generative AI 

Generative AI has rapidly emerged as a transformative tool across multiple sectors, including transportation, 

with growing interest in its potential for data synthesis, simulation, and decision support. However, 

perceptions of its benefits and risks differ across organizational types. 

Both public sector and academic/research participants reported relatively high benefit scores for Generative 

AI, with medians centered around 4.0 to 4.5. Academic respondents tended to rate benefits slightly higher 

and showed a narrower range, suggesting a more consistently positive outlook. In contrast, the public sector 

group exhibited greater variability, including a subset of respondents rating benefits at the lower end (2-3), 

potentially indicating hesitations about practical utility or implementation barriers in government contexts. 

Regarding risk perceptions, both groups exhibited moderate concern. Median risk scores hovered around 

3.0 for the public sector and slightly lower, near 2.5, for academic/research participants. While outliers 

existed in both groups (including some maximum risk ratings), the distributions generally reflected a shared 

but cautious stance on potential misuse, misinformation, or regulatory gaps associated with generative 

technologies. 
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Statistical analyses confirmed the absence of significant differences across organizational types. ANOVA 

results for benefit scores and risk scores both failed to reach statistical significance, indicating that the 

observed variations in perceptions are not robust enough to generalize beyond this sample. 

(7) Recommendations for Future Development 

To effectively navigate these sectoral differences and unlock the full potential of AI in transportation, 

WisDOT is advised to take the following strategic actions: 

● Foster cross-sector dialogues to align expectations: Organize structured forums that bring together 

academic, private, and public stakeholders to share perspectives on AI benefits and constraints. Use 

these engagements to co-develop shared success criteria, especially for high-impact applications 

like autonomous systems or generative design tools. 

● Bridge perception gaps through joint pilot programs: Partner with research institutions to co-lead 

pilot projects that translate academic innovation into applied public sector use. These collaborations 

can ground academic optimism in operational realities while exposing public agencies to emerging 

capabilities. 

● Use perception data to guide AI communication strategy: Leverage these findings to tailor internal 

and external communication and emphasize the demonstrated value of AI to build support within 

skeptical stakeholder groups.  

By acknowledging and strategically addressing perceptual divides, WisDOT can create a more unified, 

informed, and agile AI deployment ecosystem that will allow the agency to responsibly lead in the next 

phase of digital transformation. 

4.3 Follow-up Interviews 

To supplement the survey findings with real-world perspectives, 8 follow-up interviews were conducted 

with professionals from six organizations, including several state Departments of Transportation (FDOT, 

GDOT, WSDOT, TxDOT) and nationally recognized infrastructure consulting firms (HDR, Stantec). 

Detailed information is presented in Appendix C. 

A consistent theme across interviews was the importance of beginning with clearly defined objectives. 

Rather than pursuing AI technologies for their novelty, interviewees stressed the need to start with specific 

use cases where measurable improvements can be demonstrated. Several participants emphasized that 

agencies benefit most when they work backward from desired outcomes and then identify how AI can 

support those goals. 
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The interviews also underscored the value of an iterative and multi-level approach to AI adoption. Agencies 

are increasingly combining policy development with real-time operational pilots, enabling them to learn 

through experience while simultaneously shaping internal governance structures. For example, some DOTs 

have launched pilot projects before formalizing agency-wide policies, using the outcomes to inform broader 

frameworks for AI integration.  

Data quality and infrastructure readiness emerged as foundational priorities. Interviewees widely agreed 

that without accurate, well-managed, and accessible data, even the most advanced AI models cannot deliver 

meaningful or reliable insights. Several agencies have invested in data audits and structured data collection 

protocols to prepare for scalable AI applications. 

Workforce development was also identified as a critical factor. Many agencies are still in the early stages 

of AI training and management, with some developing internal training programs while others rely on 

hands-on project-based learning. Interviewees highlighted that technical knowledge alone is insufficient; 

successful AI integration also requires cultural readiness, leadership support, and staff engagement. 

Importantly, the interviews reinforced the necessity of maintaining human oversight in AI systems, 

particularly for safety-critical applications. While AI can support faster and more consistent decision-

making, final judgments must remain with qualified personnel who understand the broader operational 

context. This sentiment reflects growing awareness about the risks of over-reliance on automated systems 

and the need for accountability in public-sector decision-making. 

Finally, participants emphasized the importance of fostering diverse partnerships. Collaborations that 

include internal DOT teams, private-sector vendors, and academic researchers allow for both near-term 

implementation and long-term innovation. While vendors can accelerate deployment, academic 

partnerships support strategic exploration and the development of new capabilities. 

Taken together, these insights point to a set of priorities that align closely with the survey findings: begin 

with clear goals, adopt an iterative implementation strategy, prioritize data infrastructure, invest in 

organizational readiness, and ensure AI applications are grounded in transparency and human oversight. 

By learning from the experiences of peer agencies, WisDOT can shape a balanced, forward-looking strategy 

that addresses both the opportunities and challenges of AI in transportation.  
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5. RECOMMENDATIONS AND ROADMAP 

Building upon the comprehensive data analysis presented in Section 4, this chapter outlines strategic 

recommendations and a structured implementation roadmap for integrating AI technologies into 

Wisconsin’s transportation systems. The recommendations are designed to address the key challenges and 

opportunities identified through the survey and follow-up interviews, providing WisDOT with actionable 

guidance for successful AI adoption across multiple time horizons and investment levels. 

5.1 Comprehensive Recommendations 

5.1.1 Data Management and Quality Enhancement 

As revealed by the survey analyses, data quality and preparation challenges vary significantly across 

different data types, with text data presenting cleaning difficulties and vision data posing labeling 

challenges. To address these issues, we recommend that WisDOT develop or enhance the current data 

management strategy to standardize data collection, storage, and quality control protocols across the 

organization with AI adoption in sight. This should include data dictionaries, metadata standards, and 

quality assurance processes that ensure consistency and interoperability across all departments and systems. 

The critical importance of data quality was clearly emphasized in our follow-up interviews (Section 4.3), 

where transportation agencies consistently highlighted data challenges as major barriers to AI 

implementation. As TxDOT’s strategic data scientist noted, inconsistent data formats, such as 15 variations 

of the same highway name in databases, required extensive cleanup. Similarly, FDOT encountered 

challenges with underrepresented categories in training datasets that affected model performance, 

particularly for rare cases. These real-world experiences confirm our survey findings and underscore the 

need for agency-wide data governance and quality improvement initiatives to support the use of AI.  

Although AI depends heavily on high-quality data to learn patterns, make predictions, and generate insights, 

AI can be used to improve data quality as a valuable tool. Applications include anomaly or outlier detection, 

feature extraction and classification, cleaning and standardizing unstructured data with NLP, missing value 

imputation, and multi-source data integration using machine learning models. For example, we recommend 

investing in transportation-specific NLP tools that can clean and structure incident reports, traveler 

information, and similar sources. This should include locally deployed fine-tuned Large Language Models 

(LLMs) that can be customized for transportation terminology and document formats while maintaining 

data privacy and security. Vision data labeling, identified as particularly resource-intensive, can be 

addressed through semi-supervised learning approaches. By implementing active learning and semi-

supervised techniques, WisDOT can reduce the manual workload while maintaining annotation quality, 

particularly for critical applications like safety monitoring and infrastructure assessment. These approaches 
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strategically select the most informative samples for manual labeling while using algorithmic approaches 

for routine cases. 

5.1.2 AI Application Priorities 

Initial AI applications should prioritize map and traffic data, which were identified as high-quality, low-

difficulty sources in our survey. These structured data types offer the most reliable foundation for early AI 

implementation while delivering strong operational benefits. By building on these strengths, WisDOT can 

demonstrate early successes while developing capabilities for broader and more complex data types. 

Asset Management applications should be accelerated as the domain with both high perceived benefits 

(4.1+ rating) and shorter expected timeframes. This area offers the clearest near-term opportunity for 

demonstrating AI value while building organizational capabilities. Applications such as predictive 

maintenance, automated condition assessment, and lifecycle optimization have demonstrated success in 

peer agencies and can provide immediate operational improvements. 

Safety-focused AI systems should also receive high priority, as it emerged as another high-benefit, 

moderate-risk domain. Applications in crash prediction and prevention, incident detection, and data-driven 

safety analysis align with core agency missions while building public trust in AI technologies. These 

systems not only improve safety outcomes but also generate valuable data that can inform future 

infrastructure investments and policy decisions. 

Traffic Operations represents another priority area, with the strong clustering of responses at high benefit 

scores indicating strong stakeholder confidence in AI's ability to improve efficiency. Adaptive traffic 

control, predictive traffic congestion, and real-time incident response tools can deliver visible public 

benefits while building DOT’s AI capabilities. These applications often benefit from existing sensor 

infrastructure with fewer implementation barriers. 

For Autonomous Vehicle technologies, a more cautious approach is warranted given the balanced benefit-

risk assessment (concentrated at benefit=5, risk=5). Rather than large-scale deployments, WisDOT should 

pursue a measured, phased approach through controlled pilots, simulation environments, and infrastructure 

readiness initiatives. This approach allows the agency to develop expertise and assess implications while 

minimizing risk exposure. 

Generative AI presents emerging opportunities, particularly for knowledge management applications. The 

high benefit potential for documentation, knowledge retrieval, and scenario generation merits targeted pilot 

implementations in low-risk contexts. Applications such as standard operating procedure organization, 

design assistance, and public information management can provide valuable learning experiences while 

demonstrating tangible benefits. 
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In addition, it is essential to address urban and rural AI deployment gaps to ensure balanced spatial coverage 

and prevent deployment bias. Expanding data collection infrastructure through mobile sensing platforms 

and strategic sensor placement can extend monitoring capabilities to previously underrepresented areas, 

ensuring that AI applications serve the entire transportation network equitably. 

5.1.3 Workforce Development and Training 

Currently, our study highlighted significant gaps in AI-related training and workforce readiness across 

agencies, with 48.3% of respondents reporting no formal AI training and large majorities identifying 

technical skills (73.3%) and hands-on experience (66.7%) as critical gaps. Addressing these workforce 

challenges is essential for effective and strategic AI implementation. The follow-up interviews in Section 

4.3.5 revealed that workforce development remains an emerging priority across transportation agencies. 

TxDOT's recent launch of an 'AI 101 course' covering basic concepts, machine learning, and generative AI 

represents a proactive approach to foundational training. However, as seen at FDOT and GDOT, many 

agencies still rely on informal, decentralized training with knowledge transfer primarily through hands-on 

project participation. The WSDOT representative's emphasis on change management and practical user 

training for tools like generative AI aligns with our survey’s identification of technical skills and hands-on 

experience as the most significant gaps in the transportation workforce. 

Given the large gap in AI training and other competing needs, it is important to align AI workforce 

development and training with WisDOT’s strategic planning and budget priorities. Training effort should 

support agency’s mission critical activities across regions and bureaus, as well as fostering the development 

of core competencies, knowledge skills and ability (KSA). Moreover, training initiative should focus on 

agency’s AI capacity building through a mix of “build”, “buy” or “rent” approaches with the appropriate 

allocation of training resources and personnel.  

We recommend a tiered AI training program that includes training curricula for employees at different 

career stages with varying AI exposure. Senior employees should receive training focused on strategic 

oversight, ethical governance, and AI integration with existing systems. Mid-career professionals need 

hands-on modeling, tool proficiency, and project implementation skills. Early-career staff require 

foundational technical skills, data management principles, and application-specific toolkits. This 

differentiated approach recognizes the diverse roles and responsibilities across the organization. 

We support the development of training tasks with work experience because satisfaction with AI 

applications varies significantly by work experience. Highly experienced employees (>10 years) should 

lead deployments in mature AI domains like Asset Management, where their institutional knowledge 

ensures stability. Mid-career professionals (5-10 years) can serve in cross-domain coordination roles, while 



   
 

39 
 

early-career employees (<5 years) can drive innovation in emerging applications like Generative AI. This 

approach maximizes the value of diverse perspectives and experiences. 

We suggest targeted interventions to address the AI trust gap between employees with different AI-to-work 

experience ratios. Field demonstrations and case studies can showcase AI performance for experienced 

professionals skeptical of newer technologies. Explainable AI features and simplified dashboards can 

support specialists who are less familiar with AI models. Mentorship programs pairing AI-fluent staff with 

domain experts can facilitate knowledge transfer and build mutual understanding. Beyond formal training, 

practical learning opportunities through hands-on project experience, hackathons, and cross-functional 

innovation teams allow employees to apply AI skills to real transportation challenges. These experiential 

learning approaches complement classroom instruction and help build the practical capabilities identified 

as lacking in the survey. 

Finally, establishing an AI Center of Excellence would create a dedicated team of AI experts who can 

provide internal consulting, training, and project support across the organization. While primarily composed 

of internal DOT personnel, including technical experts and domain specialists familiar with transportation 

use cases, the Center could also engage external advisors from academia or industry on a periodic basis for 

strategic guidance. The Center would serve as the operational backbone of AI efforts across the agency and 

act as a key coordination node, interfacing with both the AI Ethics Committee and the Transportation AI 

Research Consortium to align implementation with ethical standards and research insights. 

5.1.4 Policy and Governance Framework 

The survey and follow-up interviews highlighted the importance of robust governance frameworks for 

successful AI integration. With 66.7% of survey respondents endorsing AI-specific policies as a priority 

action and 59.3% emphasizing security and ethical concerns, governance must be a foundational element 

of WisDOT’s AI strategy. 

An AI Ethics Committee could be established as a cross-functional body responsible for developing ethical 

guidelines, reviewing high-risk applications, and ensuring alignment with public values. This committee 

should include representatives from technical, legal, operational, and community engagement teams to 

ensure diverse perspectives inform governance decisions. Regular review cycles and transparent processes 

will build trust in AI applications both internally and externally. To streamline structure and ensure 

cohesion, the Ethics Committee could operate as a subcommittee within the broader Transportation AI 

Research Consortium, ensuring alignment with broader strategic and research goals. 

A comprehensive AI policy should address data privacy and security protocols, model documentation and 

transparency requirements, testing and validation standards, human oversight mechanisms for critical 



   
 

40 
 

systems, and explainability requirements for different application types. This policy framework provides 

clear guidelines for development teams while ensuring consistency across the organization. It should evolve 

over time as technologies mature and new challenges emerge. 

Implementation of a risk-benefit assessment framework would provide a structured process for evaluating 

proposed AI projects based on expected benefits, potential risks, data requirements, and implementation 

complexity. This framework should guide resource allocation and prioritization decisions, ensuring that 

investments align with organizational priorities and risk tolerance. Regular reviews of project performance 

against expectations can inform refinements to the assessment process. 

Our follow-up interviews provided valuable insights into evolving governance approaches. Several 

interviewees described implementing specialized AI policies, with one consultant noting requirements that 

“anything output from AI has to be quality controlled” and another mentioning policy against “uploading 

sensitive information” to language models. Data privacy emerged as a particular concern, with GDOT 

avoiding video recording to mitigate personally identifiable information risks, while WSDOT discouraged 

the use of external tools like ChatGPT due to data leakage concerns. These practical approaches from peer 

agencies provide valuable models as WisDOT develop its own framework.  

Also emphasized in these follow-up interviews is the responsible AI-human collaboration that requires 

maintaining appropriate human oversight in all AI implementations, particularly for safety-critical 

applications. Clear decision authority boundaries between automated systems and human operators must 

be established, with escalation protocols for edge cases and unexpected situations. This approach balances 

efficiency gains with safety considerations. 

Model management processes should be established for versioning, performance monitoring, drift detection, 

and retraining to ensure AI systems remain effective and trustworthy over time. These governance 

mechanisms recognize that AI systems are not static deployments but evolving capabilities that require 

ongoing monitoring and maintenance. Regular audits and performance reviews can identify issues before 

they impact operations. 

5.1.5 Collaboration and Partnership Models 

WisDOT has already engaged in a range of AI-related partnerships, including vendor collaborations, peer 

agency exchanges, academic engagements, and participation in national networks such as TRB and 

AASHTO initiatives. These efforts support capability building and knowledge sharing. 

To further strengthen these foundations, we recommend establishing a Transportation AI Research 

Consortium in partnership with Wisconsin universities, technology companies, and public agencies. This 

consortium would serve as a formal platform for identifying emerging AI opportunities, conducting joint 
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research, sharing datasets and tools, and piloting transportation-specific AI applications. It would be 

composed of academic researchers, DOT experts, and private-sector partners working toward shared goals. 

To maximize impact and avoid redundancy, the Consortium could host the AI Ethics Committee as a 

standing subcommittee and maintain regular coordination with the AI Center of Excellence. 

5.2 Implementation Roadmap 

To guide WisDOT’s AI adoption over time, Figure 5.1 outlines a phased implementation roadmap across 

short-, medium-, and long-term horizons. The roadmap emphasizes manageable progress, focusing on 

foundational priorities early on and scaling up as capacity grows. 

 

Figure 5.1 WisDOT AI Implementation Roadmap 

5.2.1 Short-term Implementation Plan (1-3 years) 

Building on the survey findings that identified Asset Management, Transportation Safety, and Traffic 

Operations as domains with high benefit potential and shorter implementation timeframes, the short-term 

plan focuses on these areas while establishing foundational capabilities. 

The first year should emphasize establishing data foundations through a comprehensive data asset inventory 

and quality assessment. Standardized data collection protocols for high-priority data types should be 

developed, with basic data cleaning and preparation pipelines implemented to support initial applications. 

Data governance structures and quality monitoring processes will provide the framework for sustainable 

data management practices. This foundation is essential, as the survey findings clearly identified data 

quality as a key to successful AI implementation. 

In years one and two, proof of concept applications should be discussed and identified in high-value areas 

and/or near-term highway or traffic projects: automated asset inventory using computer vision, predictive 

maintenance tools for critical infrastructure components, machine learning for traffic pattern analysis and 

basic prediction leverages existing data streams for immediate benefits, NLP for automated incident report 

classification and trend analysis. The follow-up interviews in Section 4.3.2 identified several successful 
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early-stage AI implementations that could serve as models for WisDOT. For traffic operations, Las Vegas’s 

implementation of the Derq system uses video cameras and edge computing at intersections to “improve 

safety and reduce delay by approximately 20%”. In asset management, TxDOT has used connected vehicle 

data to predict battery failures with 96% accuracy, enabling proactive maintenance scheduling. FDOT's 

progress in pavement condition forecasting through machine learning for raveling detection demonstrates 

the feasibility of incremental improvement through multiple iterations. These practical examples provide 

valuable reference points for WisDOT’s initial implementations. 

Three to five strategic pilots in years two and three allow for controlled experimentation with more 

advanced applications. Testing advanced traffic management systems in selected urban corridors 

demonstrates value in visible public-facing applications. Automated safety monitoring at high-risk 

intersections directly addresses critical safety priorities. Testing generative AI for a standard operating 

procedure organization provides a low-risk experience with emerging technologies. Initial digital twin 

prototypes for limited infrastructure segments lay the groundwork for more comprehensive 

implementations later. 

By year three, performance baselines should be established through metrics and monitoring for deployed 

AI systems. Documenting operational improvements and efficiency gains builds the case for investment, 

while assessing workforce skills development identifies remaining gaps to address. Governance processes 

can be refined based on early implementation experience, ensuring they remain effective. 

Organizational capacity building should span the entire short-term period, with basic AI literacy training 

for 50% and advanced training for 25% of relevant staff. The AI Center of Excellence should be established 

with initial technical specialists who can support early implementations and knowledge transfer. Draft AI 

governance policies and ethics guidelines will provide the framework for responsible development, while 

initial risk assessment frameworks for AI project evaluation ensure alignment with organizational priorities 

and values. 

5.2.2 Medium-term Development Plan (4-7 years) 

The medium-term plan expands AI implementation to more complex domains while enhancing existing 

applications and addressing the underlying capabilities identified as priorities in our survey. 

In years four and five, successful applications from the short-term phase should be scaled up and 

incorporated into selected projects or operational areas identified in the short-term stage, moving from pilots 

to production. Integration of AI systems with existing transportation management platforms ensures 

operational cohesion and data sharing. More sophisticated predictive models can be developed using the 
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expanded historical data collected during early implementations. Automated decision support for routine 

maintenance planning can deliver efficiency gains while building trust in AI-assisted processes. 

Data integration advances in years four through six should focus on developing multimodal fusion 

capabilities that combine vision, text, and sensor data for comprehensive situational awareness. Real-time 

data streams for dynamic decision support enable more responsive operations, while automated validation 

and enrichment processes improve data quality at scale. Edge computing capabilities for distributed data 

processing support applications in remote locations and reduce central processing requirements. 

Application scope expansion in years five through seven should include comprehensive digital twin 

environments for major highway corridors, providing powerful simulation capabilities. Advanced 

generative AI applications for planning and design can accelerate project development while improving 

outcomes. Sophisticated safety analytics integrating multiple data sources enable more proactive risk 

management. Limited testing of autonomous vehicles on open roads prepares for future mobility. 

Governance and ethics frameworks should be strengthened in years six and seven through comprehensive 

AI accountability mechanisms that ensure responsible use. Enhanced explainability features for complex 

AI systems support user trust and regulatory compliance. Community engagement on AI deployment 

ensures public perspectives inform development priorities. 

Workforce development should continue throughout the medium term, potentially including the creation of 

certificate programs, new career pathways and development of robust knowledge management practices. 

Establishing career development pathways for AI-focused transportation professionals will help recruit and 

retain specialized talent. Formal knowledge transfer mechanisms between technical and domain experts can 

bridge organizational silos and ensure that AI applications align with the agency’s operational needs. Basic 

AI literacy training will cover 100% relevant staff, and advanced training programs will be continuously 

developed and delivered to the most relevant staff. 

5.2.3 Long-term Vision (8+ years) 

The long-term vision focuses on advancing foundational technologies identified in the survey as having 

high potential but requiring longer implementation timelines, including autonomous vehicles and digital 

twins. 

By years eight to ten, WisDOT should aim to build more integrated transportation systems that support 

data-driven decision-making and predictive capabilities across key domains. Digital twins may enable 

enhanced planning and simulation, while adaptive infrastructure can help improve operational efficiency. 

Support for autonomous vehicle integration is expected to grow, with attention to infrastructure readiness 
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and communication between vehicles and transportation assets. Progress in AI-supported multimodal 

coordination and smart corridors may help alleviate congestion and expand mobility options. 

Beyond year ten, the focus shifts to maintaining system adaptability and resilience. Potential initiatives may 

include predictive maintenance tools, expanded data sharing across regions, and AI-enhanced service 

planning to ensure equitable access in both urban and rural areas. 

Finally, WisDOT should continue exploring opportunities to apply transportation AI to Wisconsin-specific 

challenges, such as winter operations and rural mobility, while contributing to broader national progress 

through research and policy development. 

5.3 Success Metrics and Evaluation Framework 

To track progress and demonstrate value, we recommend leveraging AI evaluation with WisDOT’s MAPSS 

Performance Program. The MAPSS Program consists of thirty individual performance measures centered 

around five core goals: Mobility, Accountability, Preservation, Safety, and Service. This framework 

combines outcome-based metrics that track tangible improvements and perception-based metrics that 

monitor organizational readiness. 

5.3.1 Outcome-Based Metrics 

Outcome-based metrics evaluate how AI technologies deliver measurable progress across MAPSS goals: 

• Mobility: Reduced congestion and improved travel time reliability in AI-managed corridors; 

increased throughput at key intersections; decreased emissions from idle time. 

• Accountability: Operational cost reductions; automated workflows leading to staff time savings; 

more accurate resource allocation. 

• Preservation: Improved asset condition ratings; reduced unexpected failures; cost savings from 

predictive maintenance; extended asset lifespan. 

• Safety: Fewer crashes and reduced severity at AI-monitored sites; faster incident response times; 

improved hazard detection. 

• Service: Higher user satisfaction; improved accessibility; reduced service delays; better public 

perception of transportation quality. 

5.3.2 Perception-Based Metrics 

To complement technical outcomes, we propose a biennial Organizational Readiness Metrics Survey to 

assess internal capacity and stakeholder confidence: 

• Workforce Readiness: Staff AI training rates, perceived training effectiveness, and reduction in 

skills gaps. 
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• Data Preparedness: Improvements in data quality, accessibility, and usability; reduced data 

preparation time. 

• Governance Maturity: Implementation of AI policies; staff awareness of governance and ethics; 

internal compliance rates. 

• Collaboration Effectiveness: Number and success of external partnerships; interdepartmental 

knowledge sharing; participation in AI communities. 

This mixed-methods framework ensures WisDOT can track both the practical impacts of AI and the 

organizational maturity required to sustain progress. It supports adaptive management, encourages 

transparency, and aligns AI development with MAPSS priorities.  
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6. CONCLUSIONS 

6.1 Key Findings 

Table 6.1 presents key findings of this work, including adoption trends, data and skill challenges, high-

potential application areas, and recommended actions. 

Table 6.1 Summary of Key Findings  

Theme Key Findings Implications 

AI Adoption 

Maturity 

70.8% of professionals have <5 years of AI 

experience. 

AI adoption is early stage with 

phased strategies. 

Data Quality & 

Type 

Map & Traffic data are high-quality and low 

difficulty. Text and Vision data needs cleaning 

and labeling. 

Start with structured data; 

invest in tools for text and 

vision processing. 

Skills Gaps 73.3% reported technical skills gaps; 50.0% 

cited data management as a challenge. 

Upskilling and hiring for 

technical and data roles. 

High-Potential 

Application Areas 

Asset management, safety, and traffic operations 

offer high benefit and short timelines. 

Focus early AI efforts in these 

domains. 

Autonomous 

Vehicles 

Rated as relatively high benefit but long 

implementation horizon and highest risk. 

Requires a long-term, staged 

approach and plans to mitigate 

risk. 

Training 

Effectiveness 

48.3% had no formal AI training; only 17.2% 

rated it highly effective. 

Improve and expand training 

programs. 

Recommended 

Actions 

77.8% support AI training; 66.7% endorse AI-

specific policy and data system improvements. 

Build internal capacity and 

governance frameworks. 

 

6.2 Implications and Prioritized Recommendations 

Our highest-priority recommendations for WisDOT include: 

1. Establish comprehensive data governance frameworks that standardize collection, storage, and 

quality control protocols across the organization. This foundation is essential as data quality 

consistently emerges as a prerequisite for successful AI implementation. 
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2. Prioritize Asset Management, Safety, and Operations applications for initial AI deployments. 

These areas offer the clearest near-term opportunities for demonstrating AI’s benefits while 

building organizational capabilities. 

3. Implement AI training programs that develop differentiated skills for employees at different 

career stages and with varying AI exposure. This approach could address the workforce gaps 

identified in the survey and maximize the value of diverse perspectives and experiences.  

4. Establish AI Center of Excellence to create a dedicated team of AI experts who can provide 

internal consulting, training, and project support across the organization. The Center would serve 

as the operational backbone of AI efforts across the agency and act as a key coordination node, 

interfacing with both the AI Ethics Committee and the Transportation AI Research Consortium to 

align implementation with ethical standards and research insights. 

5. Develop robust AI governance policies that address data privacy, model documentation, testing 

standards, and human oversight mechanisms. Clear governance frameworks provide guidelines for 

development teams while ensuring responsible innovation. 

6. Pursue a diversified partnership strategy that leverages vendor relationships for proven solutions, 

academic collaborations for research, and peer agency exchanges for knowledge. This balanced 

approach accelerates capability development while managing resource constraints. 

6.3 Implementation Roadmap 

A summary of the phased AI implementation roadmap, along with tailored strategies, is provided in Table 

6.2 to guide WisDOT’s planning and prioritization across time horizons.  

Table 6.2 WisDOT AI Implementation Roadmap Overview 

Timeline Strategic Focus 

Short-term  

(1–3 years) 

 • Establish data foundations 

 • Deploy proven AI in asset management, safety, operations through small-scale, 

pilot applications 

 • Build organizational capacity 

Medium-term  

(4–7 years) 

 • Scale successful applications at selected locations 

 • Advance data integration and fusion 

 • Develop domain-specific expertise 

 • Expand to digital twins and advanced safety analytics 
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Long-term  

(8+ years) 

 • Integrated predictive management systems 

 • Comprehensive digital twins 

 • Infrastructure for AVs 

 • Advanced multimodal mobility solutions 

 

In the short term (1-3 years), WisDOT should focus on establishing data foundations, deploying proven AI 

applications in high-value areas using pilot studies, building organizational capacity, and conducting 

strategic pilots to gain experience with more advanced technologies. Second, the medium-term plan (4-7 

years) expands successful applications statewide, advances data integration capabilities, enhances 

workforce expertise, and expands into more sophisticated applications like digital twins and advanced 

safety analytics. This phase bridges initial implementations with a longer-term vision. Lastly, the long-term 

vision (8+ years) aims for fully integrated transportation management systems with sophisticated predictive 

capabilities, comprehensive digital twins, infrastructure readiness for autonomous vehicles, and advanced 

mobility solutions. This vision represents the culmination of WisDOT’s AI journey, positioning the agency 

as a leader in transportation innovation. 

6.4 Broader Impacts, Next Steps, and Study Limitations 

The integration of AI into transportation systems represents a transformative opportunity to enhance safety, 

efficiency, and sustainability across Wisconsin’s transportation network. By implementing the 

recommendations in this report, WisDOT can build the foundational capabilities needed to harness this 

potential while managing associated risks and challenges. Furthermore, while this study offers a 

comprehensive strategic framework and implementation roadmap, a detailed analysis of future investment 

levels (e.g., specific dollar amounts or precise budget allocations for the various AI application areas) was 

considered beyond the defined scope of this current research phase. Such detailed financial planning would 

form a subsequent stage of work. 

Moving forward, if a Phase II project is initiated, it will build on the insights from this report to translate 

high-level strategies into detailed implementation pathways. Phase II will focus on collecting more targeted 

and granular data from internal WisDOT operations, external stakeholders, and emerging AI vendors to 

inform use-case-specific feasibility and readiness. It will also support the development of technical 

prototypes, internal workforce engagement strategies, and policy alignment mechanisms to operationalize 

AI adoption at scale. In addition, more investment suggestions will be given after this work to collect 

relevant budget information from other regions.  
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Proposed Phase II Plan: 

Building on the findings of Phase I, Phase II could explore a range of strategic activities to further assess 

and advance the role of AI within WisDOT. Recognizing that not all components may be achievable within 

a single year, the following items represent potential areas of exploration and prioritization: 

● Conduct in-depth case studies on high priority use cases identified in Phase I. 

● Expand data collection to include: (a) Internal WisDOT operational datasets to evaluate AI-

readiness. (b) Feedback from frontline staff and local partners to validate practical deployment 

challenges. (c) Landscape scan of AI vendors and technologies applicable to WisDOT needs. 

● Develop initial AI implementation prototypes in collaboration with WisDOT units. 

● Establish evaluation criteria and metrics for monitoring AI deployment outcomes across technical 

and operational dimensions. 

● Co-design a workforce development roadmap with internal HR and training departments to close 

identified skill gaps. 

● Initiate cross-agency collaboration forums to align data-sharing, ethical standards, and 

procurement strategies. 

● Refine the AI implementation roadmap by incorporating Phase II findings into a detailed, year-

by-year action plan for multiple investment scenarios. 

● Collect comparative survey data from other U.S. states and international transportation agencies 

to benchmark AI adoption practices and investment models. These insights will support the 

development of context-specific funding strategies tailored to WisDOT’s operational landscape 

and policy environment.
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8. APPENDIX 

APPENDIX A: FULL LITERATURE REVIEW 

1. Data Sources 

This task employed a diverse array of reputable and specialized data sources in conducting the literature 

review. We aimed to ensure a thorough coverage of academic research and industry practices, capturing 

the multifaceted nature of AI's application in transportation. The following section details the data sources, 

explaining their significance and contribution to our research. 

Google Scholar served as our primary gateway to academic literature. It provided access to a vast array of 

peer-reviewed articles, conference papers, and academic publications across multiple disciplines. It allowed 

us to discover connections between AI and transportation, ranging from asset management to autonomous 

vehicles. Moreover, to delve deeper into transportation-specific research, we utilized the Transport 

Research International Documentation (TRID) database. TRID is the world's largest and most 

comprehensive bibliographic resource on transportation research information. With access to over 1.25 

million records of transportation research worldwide, including journal articles, books, technical reports, 

and conference proceedings, TRID provided us with a wealth of specialized knowledge. This database was 

instrumental in identifying trends, challenges, and innovations specific to AI applications in transportation 

across different agencies. Lastly, the National Transportation Library Repository & Open Science Access 

Platform played a crucial role in our understanding of government-funded research and initiatives. This 

platform provides access to research results and data sponsored by the U.S. Department of Transportation. 

It offered valuable insights into federal perspectives on AI in transportation, including policy considerations, 

funding priorities, and large-scale implementation projects. The inclusion of this source ensured that our 

review captured not only academic and industry viewpoints but also governmental strategies and initiatives. 

By leveraging this diverse array of authoritative sources, we aimed to capture a comprehensive and nuanced 

view of the current state, trends, and future directions of AI applications in transportation. Our multi-faceted 

approach, combining insights from academic research, government initiatives, industry innovations, and 

technical publications, provides a holistic understanding of the field. This thorough and varied data 

collection strategy ensures that our literature review offers a robust foundation for understanding the 

complex and rapidly evolving landscape of AI in transportation. 

2. Search Strategies 

The literature review employed a comprehensive and systematic search strategy designed to capture the 

breadth and depth of this rapidly evolving field. The strategy was carefully crafted to ensure thorough 
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coverage while maintaining focus on the most relevant and impactful research. This section outlines our 

approach to identifying, filtering, and selecting the literature for review. 

We began by developing a set of key search terms and phrases that encompassed the intersection of artificial 

intelligence and transportation. These terms were carefully selected to capture a wide range of AI 

technologies and their applications across various transportation domains. Our primary search string 

included combinations of AI-related terms (e.g., "artificial intelligence," "machine learning," "deep 

learning," "computer vision", "natural language processing") with transportation-specific terms (e.g., 

"transportation," "traffic management," "public transit," "logistics," "autonomous vehicles"). We also 

included more specific phrases such as "transportation asset management," "digital twins in traffic," and 

"safety in transportation" to capture domain-specific applications. 

To ensure comprehensive coverage, we employed both broad and narrow search strategies. The broad 

strategy used general terms to capture a wide range of literature, while the narrow strategy utilized more 

specific combinations to focus on applications or technologies. For example, a broad search might use 

"artificial intelligence AND transportation," while a narrow search could be "deep learning AND traffic 

signal optimization." We conducted our searches across the previously mentioned databases, adjusting our 

search strings as necessary to accommodate the specific syntax and capabilities of each platform. Boolean 

operators (AND, OR, NOT) were used to refine searches and combine different concepts. For instance, we 

might use a search string like: (("artificial intelligence" OR "machine learning") AND ("transportation" OR 

"traffic") NOT ("air traffic control")). 

To ensure the relevance and currency of our review, we primarily focused on literature published within 

the last five years (2019-2024). However, we did not strictly limit our search to this timeframe, as some 

seminal works or foundational studies from earlier years were also included when deemed highly relevant 

or influential to the field. Language filters were applied to limit results to English publications, as this 

language encompasses a significant portion of global research in this field and aligns with the linguistic 

capabilities of our research team. By employing this comprehensive and multi-faceted search strategy, we 

aimed to capture a broad and representative sample of the current research and applications of AI in 

transportation. This approach allowed us to synthesize insights from various sources, providing a holistic 

view of the field while maintaining a focus on the most relevant and impactful developments. 

3. Analysis Approach 

Our analysis approach for this literature review on AI applications in transportation has been meticulously 

designed to achieve three primary objectives: (1) identifying current applications of AI in transportation, 

(2) determining key questions for surveying DOTs and related institutions, and (3) checking for existing 
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answers to potential implementation challenges. This focused strategy lays the groundwork for subsequent 

interviews with DOT personnel and other relevant stakeholders, ultimately leading to the development of 

future recommendations for AI implementation in our state's DOT. 

We began our analysis by systematically categorizing the AI applications found in the literature. This 

categorization process involved classifying applications based on specific transportation domains such as 

traffic asset management, transportation safety, and transportation operations. Simultaneously, we 

categorized the AI technologies used, noting whether applications employed ML, computer vision, natural 

language processing, generative AI, or other AI techniques. We also paid close attention to the 

implementation stage of each application, distinguishing between theoretical proposals, pilot projects, and 

fully implemented systems. The geographical context of these implementations was carefully recorded, 

with a particular focus on state-level DOT initiatives. This comprehensive categorization allowed us to 

create a detailed map of current AI applications in transportation, identifying both common trends and 

innovative approaches. Figure A1 shows the distribution of papers and reports we reviewed. 

To prepare for our interviews with DOT personnel and related agencies, we conducted a thorough gap 

analysis. This process involved identifying areas where the literature provided comprehensive information 

and contrasting them with areas of limited coverage. We noted discrepancies or conflicting information in 

the literature that would require clarification from practitioners. Additionally, we highlighted innovative 

applications that, while not widely adopted, could be of particular interest to our state's DOT. This gap 

analysis directly informed the development of our interview questions, ensuring that we address both well-

documented areas and potential blind spots in the current literature. 

Throughout our review, we paid particular attention to implementation challenges and solutions mentioned 

in the literature. We categorized common challenges, such as data quality issues, integration with legacy 

systems, and workforce skills gaps. Alongside these challenges, we compiled successful strategies and best 

practices for overcoming them. Importantly, we identified areas where challenges persist without clear 

solutions, marking these as key points for further investigation during our upcoming interviews. This 

synthesis helps us anticipate potential hurdles in AI implementation and prepare targeted questions about 

overcoming these obstacles. 

As a final step, we synthesized our findings to prepare for the interview phase. We developed a list of key 

topics and questions to explore with DOT personnel based on gaps and interesting findings from the 

literature. We prepared summaries of relevant case studies and best practices to potentially share and 

discuss during interviews. Additionally, we identified areas where the literature suggests promising 

applications but lacks real-world implementation data, marking these for specific inquiry during interviews. 
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Figure A1 Types of Papers and Reports in the Literature Review. 

4. AI-based Applications in Transportation 

Transportation Asset Management 

Transportation asset management focuses on optimizing infrastructure upkeep by improving decision-

making related to resource distribution. It involves a structured approach that helps agencies determine 

where to invest funds for maximum long-term benefits [1]. It consists of an inventory and assessment, 

performance management, life cycle cost analysis, risk management, prioritization and optimization, and 

sustainability and resilience of transportation infrastructure assets, including roads, bridges, tunnels, and 

transit systems [2]. AI can enhance the efficiency, accuracy, and safety of the asset management procedure. 

For example, vehicles equipped with cameras and laser systems can collect and automatically analyze road 

infrastructure data while traveling at regular speeds. When combined with GPS, distance measurements, 

and AI-based annotation, the systems can reduce safety concerns and human error. AI can also compare 

data in real time with existing databases to produce reports on asset conditions and recommend maintenance. 

This approach saves time and enhances precision, offering a clearer view of infrastructure. Furthermore, 

AI can analyze historical data, such as weather and traffic patterns, to predict future conditions, potential 

asset failures, and the effectiveness of repairs, leading to more strategic planning and maintenance. 
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Pavement management systems are widely regarded as essential tools for transportation agencies to 

maximize available funding, effectively communicate budget requirements, and manage their pavement 

networks more objectively [3]. Over the past decade, many highway agencies have adopted 3D laser-based 

pavement imaging systems to automate pavement condition assessments. Additionally, 2D imaging 

technologies and smartphones are frequently employed for pavement evaluations, especially by local 

agencies. These collected pavement images are then used to extract pavement distresses semi- or fully-

automatically through various methods [4]. Unmanned aerial systems (UAS) are also increasingly utilized 

to enhance asset management and inspection processes, with their three-dimensional point cloud data and 

high-resolution videos offering rich information [5]. To process this, ML techniques, including neural 

networks and image processing algorithms, are used to analyze 3D point clouds and extract key features 

and insights [6]. For instance, Texas DOT is working on developing an automated system for pavement 

condition assessment using ML and AI in computer vision. This initiative aims to overcome the limitations 

of manual quality assurance and the reliance on proprietary vendor data. This will help TxDOT improve 

the quality of its automated pavement condition data, ultimately leading to better pavement performance 

across the state [7]. Back in 2017, Texas DOT used Google’s Vertex AI to analyze raw data on pavement 

cracks and conditions gathered using LiDAR technology that was mounted on specially fitted agency 

vehicles. Google’s Auto Machine Learning “object tracking” and “classification” features helped them 

categorize pavement conditions on a scale of one to ten. The time needed to complete the project has been 

reduced by 30 to 70 percent. Similarly, Georgia DOT, which collaborated with Georgia Tech, has 

implemented automatic pavement crack detection and classification using ML and deep learning [8]. They 

are also using low-cost mobile devices and AI to analyze traffic signs around potentially dangerous curves 

[9]. This implementation of automatic sign inventory can help the DOT improve safety and reduce crashes 

at road curves [10]. Moreover, researchers from academic institutions are working on using data-driven 

intelligence technologies to conduct deep data analysis on existing pavement data and create predictive 

models for pavement performance, material properties, traffic effects, and pavement maintenance plans. 

The prediction model is expected to support State DOTs in their transportation infrastructure asset 

management practices [11]. 

The project funded by Florida DOT has shown an advanced methodology to gather roadway geometry data 

more quickly, safely, and cost-effectively. The research uses Computer Vision and Deep Learning 

techniques to detect turning lane pavement markings from high-resolution aerial images. When 

implemented in Leon County, the average accuracy of identifying turning features has reached 87% with a 

25% confidence threshold [12]. It can help state DOTs identify deteriorated markings, compare turning lane 

positions with other roadway features like crosswalks, and analyze intersection-related accidents. 
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FHWA is exploring how AI can be utilized to gather and process data, potentially revolutionizing winter 

maintenance operations by improving safety, mobility, and cost-efficiency while also reducing labor 

demands and optimizing pavement design and management. Researchers from academic institutions are 

leading a project to enhance traditional model-based winter maintenance with an AI-powered system 

capable of real-time data analysis for autonomous decision-making, continuously refining its performance 

as more data becomes available [13]. For example, Recurrent Neural Networks (RNN) can be used to 

predict critical variables like salt concentrations and surface temperatures more accurately than traditional 

empirical models. By analyzing historical and real-time data, RNNs offer improved road condition 

forecasting, enabling better preparation for winter storms. Deep Reinforcement Learning (DRL) algorithms 

can optimize decisions for salting and snow removal based on real-time conditions, such as traffic flow and 

weather data. These systems "learn" over time, improving their decision-making ability with each storm. 

DRL can analyze the cost-effectiveness of actions and maximize safety while minimizing costs. 

Convolutional Neural Networks (CNN) can process visual data from surveillance cameras or truck-

mounted cameras, providing real-time insights into pavement and weather conditions. By integrating video 

data, CNNs can improve the accuracy and timeliness of road assessments, surpassing traditional data 

sources like weather stations and Road Weather Information System (RWIS). 

Other potential applications of AI in asset management include bridge visual inspections and bridge 

structural diagnosis [2]. Bridge visual inspections are conducted by transportation agencies generally. The 

bridge inspectors must visit the bridge, perform several tests, and register the type and severity of the 

damage. This process is labor-intensive and costly. To address this, industries are now adopting automated 

visual inspection techniques that use robots and computer vision to detect and quantify damages like cracks. 

For instance, CNN, a powerful classification tool, has been applied in Structural Health Monitoring (SHM) 

to detect surface defects [14]. AI algorithms can be trained to identify various types of damage, such as 

cracks, reinforcement corrosion, and moisture. Oklahoma State University and Oklahoma DOT are 

developing advanced machine-learning-based algorithms to detect different damage modes of the girder. 

The implementation of the system can facilitate damage detection and performance assessment of steel 

bridge girders under fatigue effects [15]. Virginia DOT is exploring the use of AI, augmented reality (AR), 

and virtual reality (VR) to assess the condition of its 21,000 bridges and culverts [16]. AI is applied to 

automatically detect and quantify defects such as cracks, delamination, spalls, and steel corrosion, 

simulating human visual perception. The integration of these technologies can significantly speed up the 

assessment process by recognizing patterns of deterioration and tracking changes over time. Additionally, 

AI can assist in structural analysis when some bridge data is incomplete. Inspection data typically comes 

in qualitative forms, which can be challenging to interpret for structural safety assessments. AI tools help 

automatically or semi-automatically extract quantitative information from inspection records, such as 
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images, diagrams, and notes. By incorporating data from historical inspections, AI fills in missing 

information to provide a more comprehensive assessment of the bridge's condition. 

Figure A2 AI-Driven Methods and Applications for Transportation Asset Management. 

In general, the benefits of AI applications in transportation asset management (Figure A2) are summarized 

as follows. First, AI enhances the efficiency and accuracy of infrastructure assessments, especially for 

bridges and pavements. AI helps detect, quantify, and track defects and provide real-time condition 

assessments, reducing the need for frequent on-site inspections. Second, AI-powered systems combined 

with technologies like 3D imaging, drones, and laser scanning allow for efficient, automated data collection 

and analysis. These systems can capture large volumes of data and compare it against historical databases 

to recommend timely maintenance actions, improving both precision and safety. Third, AI can analyze 

historical data on weather, traffic, and previous inspections to predict potential infrastructure failures. This 

enables proactive maintenance, optimized resource allocation, and a better understanding of deterioration 

mechanisms over time, which supports long-term planning. Lastly, by automating reporting and providing 

real-time insights, AI facilitates collaboration among engineers and inspectors. It helps agencies make better 

decisions faster, reducing the cost and time associated with infrastructure maintenance and minimizing 

disruptions to the traveling public. 

However, potential barriers to AI application in transportation asset management exist as well. Currently, 

vendors tend to focus on asset management solutions for pavements and bridges, but they have yet to fully 

adopt management software that supports decision support systems (DSS) [17]. Secondly, sensors 

sometimes provide inaccurate data and have sparse coverage. Precise weather data for urban areas is lacking, 

making it harder to rely on sensor-driven AI analysis. Also, developers may lack access to sufficient and 

high-quality data for running AI algorithms. As AI continues to evolve, there will also be a need for 

workforce training in AI technologies and advanced data analytics. Staff must also be educated on the safe 

use of UAS and other new systems and devices. 
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Transportation Safety 

AI has emerged as a transformative force in enhancing transportation safety, offering innovative solutions 

to long-standing challenges in accident prevention, emergency response, and overall risk management. The 

applications of AI in this domain span a wide spectrum, from predictive analytics for identifying high-risk 

areas to real-time monitoring systems that can detect and respond to safety threats instantaneously. 

In the realm of academic research, institutes have been exploring cutting-edge AI technologies to push the 

boundaries of transportation safety. In driver behavior analysis, researchers have employed deep learning 

methods to monitor drivers' involvement in secondary tasks [18], providing real-time insights into potential 

distractions. CNNs and Long Short-Term Memory (LSTM) networks have been utilized to predict driving 

behavior based on eye gaze patterns [19], [20] , offering a non-intrusive method for assessing driver 

attention. Advanced ML algorithms have been applied to identify drowsy and distracted driving using 

vehicle motion parameters [21], [22], enabling early detection of unsafe driving conditions. Additionally, 

logistic regression models have been used to study the impact of mobile phone use on driving [23], 

quantifying the risks associated with this common distraction. 

For pedestrian safety, researchers have utilized logistic regression models to examine the complex 

relationship between unsafe pedestrian's behavior and infrastructure [24], informing urban planning and 

road design decisions. Linear mixed statistical models have been employed to study the effects of 

distractions on children's behavior [25], providing valuable insights for designing safer school zones. 

Automated computer vision algorithms have analyzed the impact of cell phone usage on vulnerable road 

users' behavior at crosswalks [26], highlighting the dangers of distracted walking. Furthermore, ML 

techniques have been used to predict pedestrian behavior in urban scenarios and at signalized crosswalks 

[27], [28], enabling the development of more responsive and safer traffic systems. 

In the critical area of crash prediction and detection, studies have proposed innovative frameworks based 

on bivariate extreme value theory, employing ML for crash classification [10], which offers more accurate 

risk assessments. Deep learning models have been used to identify high-risk locations using connected 

vehicle data [29], [30], leveraging the increasing connectivity of modern vehicles. Computer vision 

techniques combined with deep learning have been developed for crash detection in low-visibility 

conditions [31], addressing a significant challenge in road safety. Deep neural networks have been applied 

to predict highway crashes [32], [33], potentially allowing for preemptive safety measures. Additionally, 

natural language processing techniques have been used to detect road accidents from social networking data 

[34], demonstrating the potential of non-traditional data sources in enhancing road safety. 
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Academic research has demonstrated the significant impact of AI on various aspects of transportation safety. 

Studies have shown improvements in efficiency through advanced traffic flow prediction models, enhanced 

safety via driver behavior monitoring and crash prediction systems, and better data governance through the 

integration of big data analytics. User experience has been positively affected by AI applications in 

pedestrian safety, while system management has benefited from improved crash detection methods and the 

utilization of non-traditional data sources. These advancements have led to more accurate real-time 

predictions, reduced accidents caused by human error, more effective preventive measures, and faster 

emergency response times. However, challenges remain in terms of data quality, infrastructure integration, 

and privacy concerns, which future research will need to address to fully realize the potential of AI in 

transportation safety. 

Complementing academic efforts, numerous projects funded by DOTs and other related agencies have 

focused on practical implementations of AI in safety systems. For example, the Mineta Transportation 

Institute, supported by the USDOT, developed an AI Pedestrian Traffic Safety System to address the critical 

issue of pedestrian fatalities in urban areas [35]. The AI Pedestrian Traffic Safety System project aims to 

enhance pedestrian and cyclist safety in urban areas, with a focus on Los Angeles. The system utilizes 

existing traffic cameras as input to monitor VRUs in real time. The technical approach employs a 

sophisticated series of AI and computer vision algorithms to process video feeds, enhance image quality, 

detect objects (specifically pedestrians and cyclists), and track their movements. The system leverages 

advanced AI methods for object detection, feature extraction, and real-time data processing. The output is 

highly accurate, real-time data on pedestrian and cyclist movements, which can be applied to dynamic 

traffic control and targeted safety interventions. During testing, the system demonstrated impressive 

performance, achieving over 98% accuracy in counting pedestrians. This technology addresses multiple 

aspects of transportation safety. It enables real-time monitoring of vulnerable road users, facilitates dynamic 

traffic control to prevent crashes, provides crucial data for targeted safety interventions, and supports urban 

planning and infrastructure improvements. The report highlights several potential benefits of the system. It 

is notably cost-effective as it utilizes existing camera infrastructure, making it highly scalable for covering 

large urban areas. The system also offers improved accuracy over previous automated systems and provides 

real-time data processing capabilities for immediate safety interventions. However, the report also 

acknowledges potential risks and challenges. These include issues with poor video quality due to low 

camera resolution, inadequate lighting, or adverse weather conditions. Suboptimal camera angles or 

locations and interference from shaking cameras or blocking objects are also noted as potential hurdles. 

Researchers from C2SMART have proposed a Vehicle Overheight Warning System for Bridges [36]. The 

system's input consists of traffic images captured by long-range cameras capable of operating in various 
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conditions, including day, night, and adverse weather. The technological approach involves using detection 

and instance segmentation techniques, specifically employing the YOLOv8 algorithm. The system's output 

is intended to be an early warning when an overheight vehicle is detected approaching a low-clearance 

bridge. This project primarily addresses the aspect of collision prevention in transportation safety, 

specifically targeting the reduction of bridge strikes by overheight vehicles. The report mentions several 

potential benefits, including significant cost savings from preventing bridge damage, enhanced safety for 

drivers and passengers, and improved traffic mobility. However, it also acknowledges some risks and 

challenges. These include further improving the height estimation precision, potential issues with false 

positives or negatives in vehicle detection, and the need for extensive testing in various real-world 

conditions. The report also highlights the importance of addressing technological challenges such as precise 

vanishing point estimation for different truck shapes and dealing with background noise and shadows in 

images. 

The Road Ecology Center at the University of California, Davis, developed an automated system for 

analyzing and managing environmental data from camera traps [37]. The project's overall goal was to 

improve the efficiency of processing and analyzing images of wildlife near roadways to enhance highway 

safety and wildlife protection. The system takes in camera trap images as input and utilizes AI processes, 

particularly image analysis and ML techniques, to automatically detect and identify animals in the images. 

It also includes tools to determine if multiple images show the same animal or group of animals and a video 

tagging tool to analyze animal behavior. The outputs include sorted and processed images with species 

identification and behavioral analysis. This system supports transportation safety by helping monitor 

wildlife activity near roads, which can inform measures to reduce wildlife-vehicle collisions and improve 

highway design for both human and animal safety. The report mentions that automating these processes 

results in reduced costs for State Departments of Transportation while increasing environmental 

surveillance capabilities. However, the report does not specifically mention potential risks or provide exact 

cost figures for the system. The benefits highlighted include improved efficiency in environmental 

assessment and management related to wildlife-highway interactions. 

The Mineta Transportation Institute at San José State University proposed a pedestrian detection and 

avoidance system aimed at reducing nighttime pedestrian fatalities involving motor vehicles [38]. The 

project's overall goal was to create a high-accuracy system for detecting pedestrians to prevent accidents. 

The system utilizes three kinds of sensors, including visual cameras, infrared cameras, and radars, combined 

with ML techniques. Specifically, deep convolutional neural networks (DCNNs) were employed to process 

data from the visual and infrared cameras, while the radar sensor provided range and motion information. 

The system outputs real-time alerts to drivers through a vibrating steering wheel and dashboard display 
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when pedestrians are detected. This technology primarily addresses transportation safety in the areas of 

pedestrian detection and collision avoidance, with potential applications in autonomous vehicle automatic 

braking systems. The report mentions several benefits, including high detection accuracy (over 97% in both 

day and night conditions) and the ability to function in various lighting and weather conditions. Potential 

risks or limitations noted include degraded accuracy for detecting pedestrians at greater distances due to 

camera resolution constraints. 

Moreover, Georgia DOT has funded a project for an AI-based system for automatically identifying traffic 

conflicts at signalized intersections using existing traffic monitoring cameras [39]. The project's primary 

goal was to create a system capable of identifying traffic conflicts, using existing traffic monitoring cameras. 

The system takes live video feeds from intersection cameras as input and employs deep learning techniques 

for vehicle detection. The system analyzes the extracted trajectories to identify potential conflicts and 

quantifies them using a novel "Conflict Gravity Model" that assesses both collision risk and potential 

severity. The system's output includes detailed conflict event data, such as vehicle speeds, angles, and 

computed risk metrics. This information can be used for various safety applications, including proactive 

crash prediction, intersection design evaluation, and real-time safety monitoring. The report highlights 

potential benefits of the system, such as its ability to provide a proactive approach to safety management, 

potentially reducing crashes before they occur. It could also evaluate the safety implications of emerging 

technologies like autonomous vehicles. However, the report also notes some risks and challenges, including 

computational resource requirements for real-time processing of multiple video streams and the need for 

further improvements in detection accuracy and robustness to minimize false detections. The researchers 

recommend future work to address these challenges and suggest exploring alternative camera setups to 

improve detection accuracy. 

The Renaissance Computing Institute at the University of North Carolina and the North Carolina DOT have 

proposed an AI system for rural road monitors [40]. They aimed to enhance roadway safety, particularly in 

rural areas, by leveraging AI methodologies to evaluate rural roadside features. The system uses video data 

as input. The AI tool utilizes transfer learning, active learning, and a common feature extraction backbone 

approach to efficiently train and improve the models. The output includes accurate detection and 

classification of roadside features, which are then integrated into NCDOT's geographic information system 

(GIS) linear referencing system. The report highlights potential benefits such as improved assessment of 

roadside risks and more efficient prioritization of safety countermeasures. However, it also notes limitations, 

including the need for more precise localization of detected features and the challenge of obtaining 

sufficient labeled training data. The project team suggests future work to address these limitations, 

including combining AI with classical computer vision algorithms for 3D feature placement, employing 
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self-supervised learning to reduce manual labeling requirements, and incorporating additional data streams 

like LIDAR for enhanced feature detection and ground topography analysis. 

The University of Tennessee and the University of North Carolina developed a collaborative research 

project aimed at improving pedestrian safety at intersections through the application of AI and data analysis 

techniques [41]. The project's overall goal was to enhance driver-pedestrian interactions and reduce 

pedestrian fatalities at intersections. The research utilized various data sources, including traffic signal 

camera feeds, and crash databases. The project employed several AI and data analysis methods, including 

reinforcement learning algorithms for traffic signal optimization, unsupervised ML (K-means clustering) 

to identify extreme crash cases, and random forest models to classify pedestrian injury severity. The 

project's outputs included an AI-based decentralized algorithm for traffic flow optimization that prioritizes 

pedestrian safety, a systematic procedure to detect corner cases in fatal pedestrian-vehicle crashes, and 

insights into the determinants of nighttime pedestrian crash injury severity at intersections and non-

intersections. These outputs contribute to multiple aspects of transportation safety, including crash 

prediction, injury severity analysis, and traffic signal optimization for pedestrian safety. The report 

highlights potential benefits such as improved pedestrian safety through optimized traffic signals, a better 

understanding of rare and extreme crash scenarios, and targeted interventions based on identified risk 

factors. However, it also notes potential risks, such as the challenge of balancing pedestrian safety with 

traffic efficiency and the need for careful implementation of AI-based systems in real-world traffic 

environments. The report emphasizes the importance of validating these approaches with real-life data and 

considering the ethical implications of AI-driven decision-making in traffic management. 

Clemson University developed a cloud-based road hazard detection and warning system using smartphones 

[42]. The project's overall goal was to create a cost-effective and efficient method for identifying road 

hazards such as potholes, bumps, and obstacles in real-time. The system utilizes motion data collected from 

smartphone sensors mounted in vehicles, as well as simulated data from the BeamNG physics engine. The 

technical approach combines LSTM for hazard classification with cloud-based data fusion and k-means 

clustering for improved accuracy. The system outputs road hazard detections with location data, which are 

displayed on a web interface for authorities to monitor. This project contributes to transportation safety by 

enabling early detection and reporting of road hazards that could potentially cause accidents or vehicle 

damage. While the report does not explicitly discuss risks, it mentions potential benefits, including 

improved driving comfort, safety, and the ability to continuously monitor road conditions at a lower cost 

compared to traditional methods. The system's accuracy and reliability were demonstrated through various 

experiments, showing promise for real-world application in enhancing road safety and maintenance efforts. 
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The University of Utah has developed a framework for a monitoring tool that can help transportation 

professionals identify and respond to non-recurrent traffic events, such as crashes, on arterial roads [43]. 

The researchers used raw datasets from the UDOT, as well as crash data, to build a database of information 

about traffic patterns and crash events. They employed LSTM to create a monitoring tool that can not only 

record the results of traffic anomalies but also identify when road conditions are similar to those of past 

crashes, potentially enabling proactive response measures. The report suggests that this monitoring tool 

could be used to improve various aspects of transportation safety, such as travel time reliability, 

environmental outcomes, and user safety. While the tool itself is still in development, the researchers are 

working on making the database of information publicly available, which could benefit agencies and 

stakeholders with concerns about improving traffic operations and safety analyses. The report does not 

explicitly mention any potential risks associated with the development and deployment of this monitoring 

tool. However, it highlights the benefits of being able to identify and respond to non-recurrent traffic events, 

such as crashes, in a more timely and effective manner, which could lead to improved safety, efficiency, 

and environmental outcomes for the transportation network. 

The Massachusetts DOT (MassDOT) commissioned a research project to develop an AI framework for 

detecting crosswalks across the state of Massachusetts [44]. The primary goal of this project was to create 

a comprehensive inventory of crosswalk locations, types, and categories (intersection, midblock, driveway) 

to support pedestrian safety initiatives and traffic planning. The researchers utilized annotated aerial 

imagery from 2019 and 2021 to train a deep learning model, specifically the DeepLabv3Plus architecture, 

to detect and classify crosswalks. The model was able to accurately identify continental (zebra) crosswalks, 

standard parallel line crosswalks, and solid/painted crosswalks, with an overall accuracy of over 99%. After 

the initial AI-based detection, the researchers implemented a post-processing framework to further refine 

the results, filtering out false positives and categorizing the crosswalks based on their location relative to 

the road network. The output of this project is a comprehensive GIS-based crosswalk inventory for the 

entire state of Massachusetts, which can be used to inform various transportation safety initiatives, such as 

maintenance, safety improvements, and risk modeling for pedestrian crashes. The report highlights the 

significant time and cost savings achieved by leveraging AI technology, compared to manual identification 

of crosswalks from aerial imagery. The report also discusses some potential risks and benefits of this 

approach. While the AI model demonstrated high accuracy, there were still some false positives that 

required manual validation. Additionally, the report suggests that incorporating techniques to account for 

wear and tear, as well as shifts in crosswalk locations between years, could further improve the robustness 

of the crosswalk inventory. 
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The University of Tennessee and the University of North Carolina developed an AI-based framework to 

monitor the drivers, cars, and roadways [45]. The overall goal of the project is to quantify the risks 

associated with driver impairment and distraction in terms of safety-critical events. The team utilized 

naturalistic driving data to analyze the relationship between driver impairment and crashes and near-crashes. 

They applied various statistical and ML techniques, such as binary logistic regression, 1D-CNN, LSTM, 

and 1DCNN-LSTM models, to predict the occurrence of safety-critical scenarios. The report acknowledges 

the limitations of the study, such as the lack of detailed roadway information and the inability to analyze 

lane-keeping performance due to data constraints. However, the project demonstrates the potential of 

leveraging multi-modal sensor data and advanced AI techniques to enhance transportation safety through 

the early detection of driver impairment and distraction. 

The Collaborative Sciences Center for Road Safety developed a study to evaluate vehicle-to-pedestrian 

safety [46]. The overall goal of this project was to examine how to use a cell phone to prevent crashes. The 

researchers used a remotely controlled alerting system on the smartphone to provide early, just-in-time, and 

late alerts to the participants, with varying degrees of reliability (80%, 90%, and 100%). The study 

employed a decision tree model to analyze the collected data and identify the factors that contributed to 

safe versus risky crossings. The study identified potential risks and benefits associated with the use of 

technological interventions, such as smartphone alerts, for promoting pedestrian safety. While the alerts 

were not as effective as expected, the researchers suggest that further research, including larger datasets 

and investigations into the influence of cultural and personality factors, could help elucidate design criteria 

for more effective safety solutions. 

The University of Massachusetts Amherst developed a new video analysis model to quantify the impacts 

of situational visual clutter on driving performance using driving simulation data and eye-tracking 

information [47]. This project has the potential to support transportation safety research, particularly in 

areas such as crash prediction and driver behavior analysis, by leveraging existing driving simulation data 

and quantifying the impacts of situational visual clutter. The report mentions the potential risks and benefits 

of the developed methodology. The researchers note that the image segmentation and object detection 

accuracy were constrained by the available dataset and that the methodology could be further improved by 

evaluating other deep learning and image processing approaches, investigating the impact of uncalibrated 

eye-tracking data, and incorporating vehicle status data to reveal more insights on how situational visual 

clutters affect driving performance. 

The University of Idaho developed a project to explore the capabilities of computer vision for pedestrian 

safety analysis [48]. The goal was to use computer vision to track the movement of cars, bikes, and 

pedestrians, as this technology can provide superior information about speed, trajectory, and count data for 
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various transportation modes. The report highlights the potential benefits of using computer vision for 

transportation safety applications, such as crash prediction and pedestrian safety analysis. However, it also 

mentions potential risks, such as the need for a deeper understanding of the YOLO V8 model's limitations, 

particularly in accurately estimating pedestrian walking speeds due to issues with object occlusion and 

random object identification. 

Nevada Department of Transportation (NDOT), in collaboration with the Nevada Department of Public 

Safety (DPS) Highway Patrol Division, the Regional Transportation Commission of Southern Nevada 

(RTC), and Waycare, developed an AI-based traffic management system aimed at reducing traffic incidents 

in Southern Nevada [49]. The project's primary goal was to curb traffic incidents on key corridors of I-15 

and US-95. The system utilized AI algorithms and predictive analytics to identify high-risk corridors and 

times for potential crashes, using existing local data sets as input. The technology enabled strategic police 

positioning and dynamic messaging signs to proactively address safety concerns. This approach targeted 

multiple aspects of transportation safety, including crash prediction, speed reduction, and proactive incident 

response. The project resulted in an 18% reduction in primary crashes and a 43% reduction in speeding 

drivers along the focus corridors. The report highlighted significant benefits, including substantial 

economic savings totaling $3,000,993 due to prevented property damage, medical costs, productivity loss 

from travel delays, and other agency-incurred expenses related to road crashes. The cost-benefit analysis 

showed a 16x return on the initial investment. While specific risks were not explicitly mentioned in the 

provided excerpt, the project demonstrated the potential of AI and interagency collaboration in enhancing 

road safety. The success of this program suggests it could serve as a blueprint for scalable and effective 

future strategies combining technology and interagency cooperation in traffic management and safety. 

The Mineta Transportation Institute at San José State University has developed an AI-based system for 

vulnerable road users [50]. The developed system is intended to be used for transportation safety, 

particularly in monitoring busy intersections prone to traffic accidents involving pedestrians and cyclists. 

By accurately detecting, tracking, and counting these vulnerable road users, transportation agencies can 

better manage traffic flow and implement safety measures to protect them. The report mentions several 

potential challenges and risks associated with using this system, such as poor video quality, lighting 

conditions, camera angles, and vibrations. However, the system has demonstrated high accuracy and 

effectiveness in real-world tests, with an average hourly error of only 4.1% in pedestrian counting. This 

suggests that the benefits of improved pedestrian and cyclist safety outweigh the potential risks, making 

this a valuable tool for transportation agencies to enhance road safety. 
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Figure A3 AI-Driven Methods and Applications for Enhancing Transportation Safety. 

Figure A3 provides a structured overview of transportation safety projects, illustrating the relationship 

between various inputs, methods, and applications. This visual representation, combined with the 

previously discussed works and projects, offers a comprehensive look at the current state of transportation 

safety innovation. Inputs for these projects come from a diverse range of sources. Visual cameras and 

infrared cameras provide rich visual data, while inductive loop detectors offer traffic flow information. 

Smartphone sensors, including accelerometers and gyroscopes, contribute motion and orientation data. 

Radar sensors add another layer of detection capability, particularly useful for measuring speeds and 

distances. Eye tracking technology introduces a human factors element, allowing for the analysis of driver 

attention and behavior. These inputs feed into several advanced computational methods. Computer vision 

stands out as a primary technique, capable of processing visual data to detect objects, analyze scenes, and 

track movement. Reinforcement learning, statistical learning, deep learning, and ML algorithms form the 

backbone of the analytical capabilities, allowing systems to learn from data, make predictions, and improve 

over time. The applications of these technologies are varied and impactful, including crash prediction, VRU 

monitoring, overheight vehicle warning, roadside hazard assessment, road hazard detection, and driver 

monitoring. 

The above-mentioned projects and works demonstrate a wide range of innovative approaches using AI, 

computer vision, and data analytics. These technologies offer significant potential benefits for improving 

road safety, traffic management, and infrastructure maintenance. The key benefits of these projects are 

multifaceted. They include enhanced detection and analysis of safety hazards, such as pedestrians, vehicles, 

and road conditions, as well as improved real-time data processing for immediate safety interventions. 

Many of the projects demonstrate cost-effectiveness through the utilization of existing infrastructure, which 

could lead to significant reductions in crashes and associated costs. The technologies also offer the potential 
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for a better understanding of rare and extreme crash scenarios, more efficient prioritization of safety 

countermeasures, and improved assessment of roadside risks. 

However, implementing AI in transportation safety still faces challenges. For instance, poor video quality, 

lighting conditions, or adverse weather are common concerns. There's also the potential for false positives 

or negatives in object detection, which necessitates extensive real-world testing and validation. Many of 

the projects require significant computational resources for real-time processing, which can be a challenge 

for widespread implementation. Data privacy and ethical concerns related to AI-driven decision-making 

are important considerations, as is the challenge of balancing safety improvements with traffic efficiency. 

Several projects noted limitations in available datasets for training AI models, highlighting the need for 

more comprehensive data collection efforts. Finally, the careful implementation and integration of these 

new systems with existing infrastructure remains a crucial challenge. 

Transportation Operations 

Recent years have witnessed a significant surge in academic research focusing on AI applications in 

transportation operations. This research trend reflects the growing recognition of AI's potential to 

revolutionize traffic management and improve overall transportation efficiency. A comprehensive survey 

by Guo et al. [51] laid the groundwork for understanding AI's role in urban traffic signal control with 

connected and automated vehicles (CAVs). Their work highlighted the paradigm shift from traditional 

traffic control methods to AI-driven approaches capable of handling the complexities of mixed traffic 

scenarios. Various AI techniques, including reinforcement learning and deep neural networks, being used 

to optimize signal timing and vehicle trajectories in real-time were highlighted in this paper. In the realm 

of intersection management, Yu et al. [52] proposed an integrated optimization framework for traffic signals 

and vehicle trajectories at isolated urban intersections. Their approach demonstrated the potential of AI in 

coordinating CAVs and traditional vehicles to improve traffic efficiency. Building on this, Yu et al. [53] 

developed a cooperative trajectory optimization method for CAVs. Their approach utilized AI algorithms 

to optimize vehicle trajectories across multiple intersections, underscoring the potential of AI in managing 

traffic at a broader scale. 

Feng et al. [54] introduced a spatiotemporal intersection control method specifically designed for CAV 

environments. Their AI-driven approach optimized both spatial and temporal aspects of traffic flow. This 

work highlighted the capacity of AI to make real-time decisions that significantly enhance traffic operations. 

To address the challenge of low CAV penetration rates, Ma et al. [55] developed an innovative signal timing 

optimization method using aggregated vehicle trajectory data. Their research showed that AI could 

effectively optimize traffic signals even with low CAV penetration rates, demonstrating its potential in the 

transitional period toward fully automated transportation systems. Wang et al. [56] explored adaptive and 
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multi-path progression signal control in connected vehicle environments. Their AI-based approach 

dynamically adjusted signal timings based on real-time data from connected vehicles, achieving a reduction 

in average travel time along arterial roads. This research illustrated AI's capability to adapt to changing 

traffic conditions in real-time. 

At the network level, Yan et al. [57] proposed a multiband signal coordination scheme utilizing vehicle 

trajectory data. This approach employed a heuristic algorithm inspired by evolutionary computation. Their 

AI-driven method optimized traffic flow across entire urban networks, resulting in an increase in average 

speed and a reduction in stop times compared to traditional coordination methods. Wang et al. [58] 

investigated cooperative eco-driving strategies at signalized intersections. They used reinforcement 

learning algorithms to optimize vehicle trajectories for reduced fuel consumption while maintaining traffic 

efficiency, showcasing AI's potential in addressing both operational and environmental concerns. Guo and 

Ma [59] introduced a two-stage learning and control framework for joint optimization of intersection signals 

and CAV trajectories. Their approach combined deep learning for traffic pattern recognition and 

reinforcement learning for signal control, demonstrating how different AI techniques can be integrated for 

comprehensive traffic management. Li et al. [60] proposed a novel approach using AI-controlled CAVs as 

mobile actuators to manage mixed traffic flow at intersections. They employed a multi-agent reinforcement 

learning algorithm where each CAV acts as an agent, learning to optimize its trajectory to influence 

surrounding traffic positively. Chen et al. [61] developed an AI-driven cooperative control strategy for 

mixed platoons at signalized intersections. They used a combination of deep neural networks for platoon 

state prediction and reinforcement learning for joint optimization of platoon formation and signal timing. 

Jiang et al. [62] introduced a multi-agent reinforcement learning framework for network-wide traffic signal 

control in mixed traffic environments. Each intersection in their system was controlled by an individual 

reinforcement learning agent, with a novel cooperative learning mechanism allowing agents to share 

experiences and improve collectively. 

The integration of AI into transportation operations systems has marked a significant advancement in traffic 

management across the United States. The Washington State DOT (WSDOT) developed a fuzzy logic ramp 

metering algorithm for freeway operations in the greater Seattle area [63]. The project aimed to improve 

freeway efficiency by optimizing ramp metering control. The system uses real-time traffic data from loop 

detectors as input. The algorithm employs fuzzy logic control techniques to balance multiple, often 

conflicting objectives. The output is optimized metering rates for each on-ramp. The system was 

implemented on 126 ramp meters across the Seattle area. The report highlights several benefits, including 

improved mainline efficiency, reduced congestion, and easier maintenance of the ramp metering system. It 

also notes the algorithm's ability to handle a wide range of traffic conditions without constant adjustment. 
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Potential risks include the need for proper detector placement and the challenge of balancing multiple 

objectives in heavily congested areas. The project required significant investment in software development, 

with over 90% of the budget allocated to this aspect. While specific cost figures are not provided, the report 

emphasizes the importance of adequate funding for software development, testing, and integration in 

complex transportation management systems. 

Building on this success, the California DOT has integrated similar AI technology into its active traffic 

management system along the critical I-80 corridor [5]. The fuzzy logic-based ramp metering system 

simplifies the configuration of the algorithms by using more generalized and linguistic descriptions of 

traffic conditions, such as "heavy traffic" or "light traffic," rather than relying on detailed and difficult-to-

maintain models. California DOT is now considering the statewide standardization of the fuzzy logic-based 

ramp metering method, but it is not yet mandated across all districts. The Texas A&M Transportation 

Institute developed a project for alleviating freeway congestion [64]. The report mentions potential risks 

and benefits of the project, such as the ability to leverage big data and AI to enhance transportation 

operations, as well as challenges related to data governance and resource limitations. The project had a 

budget of $297,204 over two years, and the value of the research analysis estimated an annual benefit of 

$698,850 with a cost-benefit ratio of 16.30. 

Taking AI integration a step further, the Delaware DOT (DelDOT) has implemented an advanced AI-based 

Integrated Transportation Management System (AI-ITMS) [65]. This project aims to leverage AI and ML 

technologies to enhance transportation management and improve road safety across the state. The system 

integrates various data sources, including traffic sensors, connected vehicles, and machine vision cameras, 

to provide comprehensive real-time insights into traffic conditions. The AI-ITMS employs several 

advanced technologies, including data fusion, short-term traffic flow prediction, proactive incident 

management, machine vision for traffic monitoring, and adaptive signal timing. These AI methods are used 

to analyze the input data and generate actionable insights for transportation operations. The system's output 

includes traffic flow predictions, incident detection and response recommendations, automated traffic 

signal performance measures, and connected vehicle data integration. While the report does not explicitly 

mention specific risks or costs associated with the project, it highlights several potential benefits. These 

include improved traffic flow, enhanced safety through proactive incident management, more efficient 

signal timing, and better integration of connected and automated vehicles. The system is designed to 

continuously learn and adapt, potentially leading to a more intelligent and responsive statewide 

transportation management system over time. The report also emphasizes the need for staff with appropriate 

knowledge and skills to support and maintain this advanced system, suggesting a potential area of 

investment for the department. 
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The CCAT at the University of Michigan developed an end-to-end framework for analyzing transportation 

network equilibrium [66]. The overall goal of this project is to learn the supply-side and demand-side 

components of transportation networks directly from traffic data, using computational graphs and neural 

networks to parameterize unknown elements. The input to the framework includes multi-day traffic state 

observations, such as link flows and travel times, as well as various contextual features like weather and 

road network attributes. The researchers proposed a novel neural network architecture that guarantees the 

existence of equilibrium states and allows for future scenario planning. The output of this framework is a 

set of learned parameters for the supply-side link performance functions and demand-side travel choice 

models, as well as the estimated equilibrium traffic states. This can be used to support transportation 

operations in various applications, such as planning network improvements, evaluating the impacts of 

policy changes, and predicting traffic conditions. The potential risks and benefits of this approach, as well 

as the estimated development costs, are not explicitly discussed in the report. 

FHWA developed an AI-based incident detection framework to improve traffic management center (TMC) 

operations [67]. The project aimed to leverage large-scale sensor data and advanced learning algorithms to 

enhance the performance of incident detection compared to conventional approaches. The input data for 

the framework included traffic flow, speed, and occupancy measurements from loop detectors along the 

highway. The methodology involved an AI-based approach that combined a tuned neural network model 

with a memory unit to store and learn from historical traffic profiles and incident occurrences. The report 

discussed potential future work, such as validating the approach with real-world data, incorporating 

additional input data sources (e.g., weather, time of day), and exploring more advanced deep learning 

algorithms. While the simulation-based evaluation indicated promising results, the report did not provide 

specific cost estimates for implementing the AI-based framework. The key potential benefit is improved 

incident detection performance, leading to more efficient transportation operations and increased safety for 

both motorists and responders. 

The University of North Carolina developed a project to explore the use of deep reinforcement learning to 

optimize traffic signal control in transportation networks [68]. The results demonstrated that the Deep Q-

Learning (DQN) outperformed the non-learning controllers in terms of measures like average travel time, 

queue length, and vehicle delays, even when applied to lower traffic demand situations or networks without 

incidents. The report highlighted the importance of thorough hyperparameter tuning, which was crucial for 

achieving optimal performance of the DQN model. The authors also noted that the DQN's decision-making 

process can be opaque, making it challenging to explain why the model performs better than traditional 

approaches. The University of Michigan developed a real-time distributed optimization system for traffic 

signal timing optimization in urban traffic networks [69]. The proposed techniques have the potential to 
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improve transportation network operations by optimizing traffic signal timing, increasing throughput, and 

reducing travel delay. The report highlights the benefits of considering uncertainties and coordinating 

intersections, as well as the advantages of the decentralized, end-to-end control policies for real-world 

implementation. While the report does not provide specific cost estimates, it suggests that the advanced 

technologies in smart transportation, such as distributed micro-computers and vehicle-to-infrastructure 

communication, can enable the practical deployment of the proposed approaches. The report also discusses 

potential risks, such as the need for accurate real-time traffic state estimation and the challenges in scaling 

up the reinforcement learning algorithms for large-scale networks. 

The Illinois Center for Transportation developed a research project focused on using AI and data-driven 

approaches to optimize truck platooning and its impact on autonomous freight delivery [70]. The 

researchers developed data-driven surrogate models, including generalized additive models and artificial 

neural networks, to efficiently predict the drag force of the platoons without relying on computationally 

expensive computational fluid dynamics simulations. Using the surrogate models, the researchers 

conducted a case study on a 160 km corridor in Illinois to analyze the fuel consumption and delivery costs 

of a three-truck platoon compared to conventional truck delivery. The results showed that the truck platoon 

could achieve up to 10% fuel savings depending on the headway between trucks, and the total delivery cost 

could be reduced by 30% through automation and reduced labor requirements. The report highlights the 

potential benefits of truck platooning in improving energy efficiency and reducing operational costs in the 

freight industry. However, it also notes the need to carefully consider factors like wind conditions and truck 

configurations to optimize the performance of truck platoons. The researchers demonstrate the value of 

data-driven, AI-based approaches in enabling real-time adjustments to truck platoon formations to 

maximize fuel savings and delivery efficiency. 

The University of Utah developed a comprehensive connected vehicle (CV) based traffic signal control 

system for urban arterials [71]. The project's overall goal was to establish a real-time adaptive system to 

support CV-based traffic signal control functions while accommodating a large number of connected 

vehicles. The system takes inputs such as CV trajectory data, signal phase and timing information, and 

roadside sensor data. It employs various AI and optimization methods, including dynamic programming, 

integer optimization, and adaptive control algorithms. The outputs include optimized signal timings, vehicle 

advisory speeds, and traffic progression plans. The report discusses several potential benefits, including 

improved arterial mobility, enhanced intersection safety, reduced traffic delays, and better accommodation 

of transit vehicles. It also highlights the system's capability to handle mixed traffic patterns of connected 

and human-driven vehicles. While specific costs are not mentioned, the report indicates that the proposed 

system can utilize existing infrastructure more efficiently compared to traditional methods. Potential risks 
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are not explicitly discussed in the provided summary, though challenges such as low CV penetration rates 

and the need for robust communication networks are mentioned. The report emphasizes the system's ability 

to improve both safety and operational efficiency, suggesting that it aims to mitigate risks associated with 

traditional traffic control systems. 

The Purdue University CCAT developed a two-part project to address urban traffic congestion using 

emerging technologies [72]. The report did not explicitly mention any potential risks or costs associated 

with the proposed systems. However, the focus on leveraging emerging technologies like connectivity, 

automation, and AI-based control algorithms suggests that there may be challenges related to technology 

adoption, regulatory frameworks, and infrastructure investment that would need to be addressed. Carnegie 

Mellon University and the University of Washington have developed an AI-based traffic management 

system [73]. The system utilizes various data sources, including probe vehicle speed, weather data, GPS-

based smartphone applications, incident feeds from state DOTs, and traffic counts, which are fused and 

analyzed through advanced AI and ML techniques. The AI models developed include unsupervised early 

anomaly subgraph detection, origin-destination estimation, low-rank surrogate models, intervention-aware 

traffic prediction, and reinforcement learning algorithms for optimal proactive traffic management 

decisions. The researchers evaluated the prototype system through simulation and case studies, deploying 

it on the I-70 corridor network in Maryland and the regional network in Cranberry Township, Pennsylvania. 

The system demonstrated the ability to predict non-recurring traffic events up to 30 minutes in advance and 

recommend proactive operational management strategies to mitigate the impact on mobility, safety, and 

energy use. While the report does not explicitly mention the potential risks or costs associated with the 

project, the development of this advanced traffic management system has the promise to significantly 

improve the efficiency, safety, and sustainability of transportation operations in large-scale networks. 

FHWA awarded a $1 million grant to the Missouri DOT for its Predictive Layered Operation Initiative 

(PLOI) on I-270 [74]. The project's overall goal is to improve response and operations on I-270 through the 

deployment of a predictive analytics platform. The system uses complex algorithms that analyze traffic, 

weather, and incident data as inputs. It employs AI and predictive modeling techniques to determine the 

likelihood of crashes, identify response times, and assess the potential impacts of various factors on traffic 

conditions. The project is primarily focused on improving traffic incident management and winter 

maintenance operations. Additionally, it aims to enhance public safety by predicting crash risks associated 

with events like major sporting activities. While the report does not explicitly mention potential risks, it 

highlights the benefits of improving safety and efficiency on roads through advanced technology 

deployment. The cost of this specific project is stated as $1 million, which is part of a larger $43.3 million 

ATCMTD program funding ten innovative transportation projects across the country. 
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The Michigan Department of Transportation has developed the Intelligent Woodward Corridor Project [75]. 

The project's overall goal is to improve mobility and safety along Detroit's Woodward Avenue corridor 

through an intelligent transportation network. Inputs include real-time traffic data, pedestrian movement 

information, and vehicle communications. The technical approach incorporates four main technologies: 

pedestrian detection and alerts, traffic signal prioritization, vehicle-to-vehicle and vehicle-to-infrastructure 

communications, and advanced data analytics. While specific AI methods aren't detailed, the project 

mentions using artificial intelligence, likely for traffic prediction and management. Outputs are expected to 

include real-time traveler information and optimized traffic flow. The project addresses multiple aspects of 

transportation operations, including traffic signal optimization, pedestrian safety enhancement, and 

emergency vehicle prioritization. Potential benefits include reduced congestion and improved safety for 

both drivers and pedestrians, though specific risks are not mentioned in the report. 

The Tennessee DOT (TDOT) developed an AI-based Decision Support System (AI-DSS) to help efficiently 

manage their diverse Intelligent Transportation Systems (ITS) device inventory [76]. The project's overall 

goal was to leverage AI to improve highway performance and safety and reduce congestion along the I-24 

SMART Corridor. The system integrates various ITS components, such as lane control signs, variable speed 

limits, vehicle detectors, cameras, and traffic signals, across multiple agencies and municipalities and 

manages them as a single integrated system supported by AI. By using AI to quickly process and understand 

the data, the AI-DSS can make intelligent decisions instead of relying on traditional corridor-specific traffic 

models. The project aims to reduce the cost and time it takes to deploy decision support systems across 

Tennessee, serving as a benchmark for what's possible in the transportation sector across the country. The 

report mentions that by leveraging AI, the system has achieved a 12% reduction in fatal/serious crashes and 

a 6% improvement in vehicle flow, demonstrating the potential benefits of this innovative solution. While 

the report does not explicitly mention any risks or the overall project cost, it highlights the groundbreaking 

opportunity for TDOT to increase safety on the most traveled roadway in the state, showcasing the 

transformative power of AI in transportation operations. 

Figure A4 illustrates the interconnected nature of modern transportation operations, showing how various 

inputs, methods, and applications work together to create intelligent transportation systems. Inputs range 

from traditional sources like inductive loop detectors and road weather data to more advanced ones such as 

visual camera feeds, social media data, and probe vehicle data. These diverse data sources feed into a variety 

of analytical methods, including computer vision, natural language processing, statistical learning, deep 

learning, ML, and reinforcement learning. These advanced analytical methods are then applied to a wide 

array of transportation management applications. These applications include ramp metering, traffic flow 
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prediction, traffic signal timing optimization, variable speed limit systems, traffic incident detection, and 

vehicle platooning. 

 

Figure A4 AI-Driven Methods and Applications for Enhancing Transportation Operations. 

In summary, AI has demonstrated significant benefits in improving transportation operations. Key 

advantages include enhanced traffic flow, reduced congestion, improved safety, and increased energy 

efficiency. For instance, some projects reported up to a 12% reduction in fatal/serious crashes and a 6% 

improvement in traffic flow. The implementation of AI has shown promise in optimizing traffic signal 

timing, predicting non-recurring traffic events, and enabling proactive management strategies. Additionally, 

innovations like truck platooning have demonstrated potential fuel savings of up to 10% and reduced 

delivery costs by 30%. However, these projects also face certain risks and challenges. These include the 

need for accurate real-time data collection, proper sensor placement, and the complexity of balancing 

multiple objectives in heavily congested areas. The opaque nature of some AI decision-making processes 

poses challenges in explaining system behaviors. Furthermore, the successful implementation of these 

advanced systems requires staff with specialized knowledge and skills, highlighting the importance of 

workforce development. Regarding costs, the projects vary widely in their financial requirements. While 

some reports did not provide specific figures, others mentioned budgets ranging from approximately 

$300,000 for a two-year research project to $1 million for a larger-scale implementation. It is worth noting 

that a significant portion of project budgets (in one case, over 90%) is often allocated to software 

development, testing, and integration. Despite the substantial initial investments, many projects 

demonstrated favorable cost-benefit ratios, with one study estimating an annual benefit of nearly $700,000 

against its costs. 

Digital Twins 
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FHWA’s EAR Program is sponsoring researchers at Texas A&M Transportation Institute to develop a 

novel framework for traffic safety analysis called Digital Twin-Enabled Extended Active Safety Analysis 

for Mixed Traffic [77]. The project's overall goal is to build a predictive, extended, active safety approach 

for mixed traffic of human-driven vehicles and CAVs through digital twin technology. The inputs include 

static data on road geometries and ambient road environments, as well as dynamic data on high-resolution 

vehicular trajectories under different traffic conditions collected using portable sensors, CAVs, and drones. 

The project utilizes AI methods such as diffusion neural networks for data fusion and predictive algorithms 

for vehicle motion and trajectory. The output is an integrated system that enables three-dimensional active 

safety analysis, interactive multiple-vehicle motion prediction, and predictive safety analysis. This digital 

twin approach addresses the shortcomings of traditional surrogate safety measures (SSM) and enhances the 

application of digital twins in traffic safety analysis and simulation. The report mentions the potential 

benefits of achieving FHWA's goal of zero traffic fatalities but does not explicitly discuss the risks or costs 

associated with the project. 

The University of South Carolina, in collaboration with Benedict College, developed a Digital Twin (DT) 

approach to evaluate load of precast reinforced flat slab bridges in rural South Carolina [78]. The input data 

for the DT model included results from full-scale laboratory testing of a bridge slab, finite element modeling 

calibrated with the experimental study, strain and displacement measurements, and acoustic emission data. 

The project employed an Artificial Neural Network (ANN) to classify autoencoder (AE) data and identify 

load steps. The output of the DT approach was an increased load rating factor compared to traditional 

methods. The DT approach was used for structural health monitoring and assessment of bridges, as well as 

for predicting the load-carrying capacity of an as-built bridge. The report mentioned that the DT procedure 

would benefit from additional data gathered both during testing and in the field. One potential risk identified 

was the variability associated with material properties found throughout the state, which should be 

incorporated into future studies. The benefits of this project include reduced costs on bridge maintenance 

and improved mobility. The report did not provide specific information on the project's cost. 

The University of Texas developed a DT project to create DT systems for infrastructure [79]. The project 

used various inputs, including freely available data, open-source software, and reality capture techniques 

such as LiDAR scans. The team employed AI methods like object detection and tracking algorithms (YOLO 

and DeepSORT) for real-time vehicle detection and counting. The project outputs include a digital model 

of the UTEP campus, including the road transportation network, for visualization and simulation. These 

outputs were used for various aspects of digital twins. The report mentions the potential benefits of DT 

technologies, including improved planning, construction, and communication with stakeholders through 

immersive experiences. However, the report also highlights limitations and risks. The project faced 
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challenges in obtaining detailed drawings or Building Information Modeling (BIM) models of campus 

buildings and delays in sensor installation due to bureaucratic procedures. The report does not explicitly 

mention the cost of the project. 

Carnegie Mellon University developed a digital twin system for emergency traffic management [80]. The 

input data includes 3D scanning of real-world scenes, ambulance routing sample data, and sensor data from 

IMUs. The project utilizes various AI methods, such as sensor fusion, gait classification, and gesture 

tracking. These digital twins are used for training first responders, recovery planning, forensics, and 

providing situational awareness from multiple perspectives. The report mentions several potential benefits 

of the system, such as improving day-to-day operations and professional training for future transportation 

systems, benefiting governmental agencies, and the possibility of launching a startup to commercialize the 

technology. The project also had educational impacts, with the team launching a graduate course on drone 

information systems and training numerous students. However, the report does not explicitly mention any 

risks or costs associated with the project. 

The University of Arkansas developed an AI-based DT for multimodal transportation systems [81]. Rutgers 

University developed the Mobi-Twin platform, a digital twin platform for smart mobility systems using 

high-resolution 3D data [82]. The platform takes in raw field video and point cloud data from roadside 

LiDAR and computer vision sensors as input. It employs various AI methods for background subtraction 

and multi-object tracking and detection. The output consists of vehicle and pedestrian trajectories, queue 

length estimation, signal performance measurements, and surrogate safety measures. The Mobi-Twin 

platform contributes to several aspects of digital twins, such as sensing and data acquisition, modeling and 

simulation, visualization, and application testing. The report does not explicitly mention any potential risks 

or costs associated with the project. However, it highlights the benefits include improved safety, and the 

potential to upgrade legacy detection systems at signalized intersections using LiDAR technology. 

Carnegie Mellon University developed a Digital Twin for Driving project aimed at enhancing urban 

planning and traffic management through advanced simulation technologies [83]. The project's primary 

goal was to create a drivable digital twin of Philadelphia's Roosevelt Boulevard, integrating geospatial 

imagery with data from Google Maps and OpenStreetMap. The researchers utilized tools like CityEngine 

and RoadRunner to construct detailed, editable 3D urban scenes and implemented a dynamic traffic flow 

model within the Unity driving simulator. The project's input consisted of high-resolution tile maps, 

building outlines, and traffic data from the Next Generation Simulation (NGSIM) dataset. The team 

employed various AI and data analysis techniques, including image processing, 3D modeling, and statistical 

analysis of traffic patterns. They developed a novel traffic flow model using Gaussian distributions and 

probabilistic methods to simulate realistic vehicle behaviors. The output of this project was a 
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comprehensive digital twin that could rapidly simulate and visualize changes to urban infrastructure, such 

as the addition of a bus lane. This digital twin addresses several aspects of urban digital twins, including 

infrastructure modeling, traffic simulation, and scenario testing for urban planning decisions. The report 

highlights potential benefits such as improved urban planning, enhanced traffic safety, and more efficient 

decision-making in infrastructure modifications. It also mentions limitations, including the reliance on 

available geospatial and traffic flow data and the computational demands of high-fidelity simulations. The 

researchers suggest that future work should focus on integrating real-time data feeds, developing more 

sophisticated traffic models, and incorporating multi-modal transportation systems. While the report does 

not explicitly mention specific costs associated with the project, it does acknowledge that the research was 

funded in part by a grant from Safety21, a University Transportation Center at Carnegie Mellon University, 

through the University of Pennsylvania, with support from the US Department of Transportation. 

Rutgers University developed an advanced flood preparedness system that integrates remote sensing data, 

digital twin models, web technologies, and flood simulations [84]. The system uses high-resolution 3D 

mapping data collected by mobile LiDAR technology as input to create digital twins of coastal communities, 

such as Manville Township in New Jersey. It also incorporates calibrated hydrodynamic models to simulate 

flood conditions. The output of the system includes flood impact assessments for buildings and accessibility 

to emergency services, which are visualized through a web-based flood information dashboard. The digital 

twin models and flood simulations are used for various aspects, including infrastructure modeling, flood 

impact analysis, and decision support for flood mitigation strategies. The report does not explicitly mention 

the project's cost or specific potential risks and benefits. However, it concludes that the developed tools 

provide powerful means for community stakeholders to improve their resilience to flood events, suggesting 

potential benefits in enhancing flood preparedness and mitigating the impact of coastal storms on 

transportation infrastructure. A pilot digital twin framework for open-deck rail bridges was also developed 

by Rutgers [85]. The project's overall goal is to expedite sleeper assessment, outage times, and replacement 

procedures for open-deck bridges using modern technologies such as unmanned aerial vehicles (UAVs) 

and AI. The input for this system is UAV-based 3D scans of the bridge. The output is a digital representation 

of the bridge with identified positions and alignments of sleepers and tracks, which can be used for the 

inspection and maintenance aspects of digital twins. The report mentions that the potential benefits of this 

approach include improved bridge deck monitoring and cost savings in maintenance procedures. However, 

the report does not explicitly state the specific costs or risks associated with the project. 

The Minnesota DOT and Collins Engineers, Inc. explored DT to reconstruct as-built data for MnDOT's 

building sites and buildings [86]. The collected data was processed into digital twins, including 3D reality 

models, 2D orthomosaics, and 2D ortho planes. Various software packages like Contextcapture, Pix4D, 
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GeoSLAM, and Matterport were used for data processing. The digital twins were shared via cloud platforms, 

allowing easy access and utilization by team members. The project also explored the use of virtual reality 

and mixed reality for consuming the digital twin data. The benefits of this project consist of reduced costs, 

enhanced data sharing capabilities and safety. Digital twins provide team members with a photographic 

memory of the site, the ability to evaluate changes over time, and access to hard-to-reach areas. The upfront 

equipment costs for commercial setups ranged from $18,000 to $35,000. However, the technology can 

significantly reduce the need for site visits, leading to substantial cost savings. The report estimates that the 

cost of data collection and processing for one place is around $4,869. While the report does not explicitly 

mention risks, it emphasizes the potential for reduced risks and improved decision-making due to the 

availability of comprehensive and easily accessible data. 

 

Figure A5 AI-Driven Methods and Applications for Digital Twins in Transportation. 

Digital Twin technologies (Figure A5) offer numerous benefits across different applications. In traffic 

safety analysis, DTs address shortcomings of traditional surrogate safety measures and enhance simulation 

capabilities. For bridge monitoring, DTs enable improved structural health assessment and load-carrying 

capacity prediction, potentially leading to cost savings through reduced bridge replacements and increased 

mobility. In urban planning and construction, DTs provide immersive experiences that improve 

communication with stakeholders. For transportation systems, DTs can enhance day-to-day operations and 

professional training. In traffic safety applications, DTs allow for accurate analysis of near-miss conditions 

and identification of safety issues. For waterway systems, DTs contribute to improved operational 

efficiency and reduced transportation delays. 

While the reports generally focus on benefits, some risks and challenges are mentioned. These include the 

variability of material properties in bridge studies, limitations in data availability and scale of 

implementation for urban DTs, and bureaucratic delays in sensor installation. The reports also highlight the 
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need for additional data gathering to improve DT procedures. Regarding costs, specific figures are not 

always provided. However, as previously mentioned, one report mentions that commercial setups for DT 

workflows can cost between $18,000 and $35,000, with data collection and processing for a single site 

estimated at around $4,869. Despite these upfront costs, the reports suggest that DT technologies can lead 

to significant long-term cost savings through reduced site visits, improved maintenance procedures, and 

enhanced decision-making capabilities. 

Autonomous Vehicles 

Purdue University's CCAT developed an AI-based and control-based system for safe and efficient 

operations of CAVs [87]. The overall goal of the project was to enhance the safety and mobility of CAVs 

by integrating short-range sensor information and long-range connectivity information. The project utilized 

DRL techniques to fuse the spatially-weighted information from the CAV's local environment as well as 

the downstream environment obtained through V2V connectivity. This allowed the CAV to construct a 

comprehensive understanding of its surroundings and make informed, proactive driving decisions, 

particularly for lane-changing maneuvers. The researchers also investigated the critical connectivity range 

required for optimal CAV performance under different traffic density scenarios. The proposed framework 

was tested and evaluated against baseline models, demonstrating significant improvements in safety and 

efficiency. The report highlighted the potential benefits of the developed system, including reduced crashes, 

improved travel time, and lower operating costs. However, it also acknowledged potential limitations, such 

as the need to address domain adaptation, stability, and transparency issues inherent in reinforcement 

learning algorithms. The report did not provide specific cost estimates for implementing the system. 

The University of Maryland developed a project to understand the impacts of AVs on traffic under different 

AV behaviors, penetration rates, and volume levels [88]. The aim was to provide highway agencies with 

guidelines on how to effectively use AVs and alleviate congestion. The researchers modified the model 

parameters of the AVs to reflect various aggressive, calibrated, and moderate driving settings. They then 

conducted extensive simulation experiments to analyze the measures of effectiveness. The report provides 

specific recommendations on the optimal AV parameter settings for different AV penetration levels and 

traffic scenarios, including a single-lane closure incident. The report does not explicitly mention any 

potential risks or costs associated with the proposed guidelines. However, it highlights the need for highway 

agencies to develop effective guidelines to coordinate with the emerging AV flows via the V2I 

infrastructure, as the impacts of AV flows can vary significantly depending on their driving behavior 

settings. 

The Georgia Institute of Technology developed a driverless vehicle implementation roadmap for the 

Georgia DOT [89]. The project's overall goal was to guide GDOT in preparing for and adapting to the 
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arrival of AVs. The inputs included a literature review, interviews with industry experts, and focus groups 

with GDOT leadership and managers. The project used qualitative research methods to synthesize expert 

opinions and develop recommendations. The roadmap aims to help GDOT anticipate impacts across 

multiple aspects of AV technology, including planning, operations, infrastructure design, and policy. The 

report discusses potential benefits like improved safety and mobility, as well as risks such as cybersecurity 

threats and job displacement. However, specific cost estimates are not provided in this summary. The 

roadmap emphasizes the uncertainty around AV technology development and deployment timelines, 

recommending that GDOT take a flexible, adaptive approach rather than making major infrastructure 

investments prematurely. 

Purdue University's CCAT has developed an explainable artificial intelligence framework for autonomous 

driving systems to enhance user trust in autonomous vehicle operations that rely heavily on AI [90]. From 

the user's perspective, the provided explanations can enhance trust in the AV system. From the developer's 

standpoint, the explanations can serve as a "debugging" tool to identify and address potential weaknesses 

in the existing system. The report does not explicitly mention any potential risks or cost estimates associated 

with the developed system. However, it highlights the benefits of the explainable DL model in improving 

situational awareness, driver assistance, and the overall reliability of autonomous systems by providing an 

extra channel for sanity checks and ensuring the model learns the ideal causal relationships between the 

driving environment and the vehicle's actions. 

The Texas A&M Transportation Institute developed a traffic control infrastructure for autonomous vehicles 

[91]. The inputs to this project included data from various sources, such as TxDOT and local government 

Temperament and Character Inventory (TCI) inventory data, as well as third-party TCI digitization data 

from companies like Mobileye, Blyncsy, and Nexar. The researchers used a variety of AI methods, 

including computer vision techniques, ML algorithms, and spatial data processing, to extract and analyze 

the TCI data. The output of this project is a comprehensive TCI dataset that can be used to enhance the 

safety and operational performance of AVs. The report mentions several potential applications of the TCI 

digitized data for AVs, including perception, prediction, and planning. For example, AVs can utilize the 

TCI data to better understand the road network configuration, the presence of traffic signs and signals, and 

the speed limits, which can improve their driving decision-making and overall safety. Regarding potential 

risks and benefits, the report identifies several legal issues that may arise from the acquisition, storage, and 

dissemination of TCI data, such as data privacy, data ownership, and agency liability. However, the report 

also highlights the potential qualitative and economic benefits of this project, including enhanced safety 

and customer experience. The economic assessment suggests that the project could lead to a reduction in 
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AV-related crashes, resulting in an estimated cost savings of over $1.7 million over ten years, with a benefit-

cost ratio of 7.71. 

The California DOT developed a project to assess the infrastructure needs and requirements for the 

deployment of AVs [92]. The study involved conducting an online survey and follow-up interviews with 

20 companies from the AV industry, including autonomous vehicle startups, technology providers, and 

traditional automotive manufacturers. The survey and interviews gathered feedback on various aspects of 

physical and digital infrastructure, such as lane markings, traffic signals, work zone information, and V2X 

data, and their impact on AV performance. The AV industry expects more stringent infrastructure 

maintenance requirements for ADS compared to human-driven vehicles, as AVs have limited perception 

capabilities compared to humans. The industry highlighted issues with interpreting physical infrastructure 

elements like lane markings, traffic signals, and signage, which can affect ADS performance. Digital 

infrastructure features like work zone information, traffic signal data, and real-time traffic conditions were 

identified as important to accelerate ADS deployment. The report did not provide specific cost estimates 

for the required infrastructure improvements. However, it highlighted the potential risks of infrastructure 

deterioration and the need for proactive maintenance policies to support safe and efficient AV deployment. 

The study also recommended increased collaboration between government agencies and the AV industry 

to address these infrastructure challenges. 

Purdue University's CCAT developed a system to improve the transition between AV control and manual 

takeover [93]. The aim was to study the factors that affect the driver's situational awareness during this 

critical transition period and to provide inputs for designing an effective SAES. The study used a 

comprehensive literature review and a driving simulator experiment to explore various risk factors, takeover 

alert designs, driver attributes, and their impact on situational awareness and takeover performance. The 

inputs to the study included road environment characteristics (weather, lane markings, construction zones), 

traffic conditions (density, heterogeneity), driver distraction and impairment, and driver demographic 

factors. The outputs of this research can inform the design of in-vehicle alerts and human-machine 

interfaces to effectively direct the driver's attention during critical transitions, thereby promoting a smooth 

and safe takeover of the AV. The findings can also guide AV manufacturers in specifying user-friendly 

headways in their control algorithms and help transportation planners update highway capacity analysis to 

account for the unique characteristics of autonomous mobility. The report did not explicitly mention any 

major risks or high costs associated with this project. However, it highlighted the importance of continued 

research in this domain to address the human factors challenges as AVs become more prevalent on public 

roads. The study represents a valuable contribution towards enhancing the safety and user experience of 

transitioning between automated and manual driving modes. 
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The University of Tennessee and Duke University have developed a framework for advancing accelerated 

testing protocols for the safe and reliable deployment of CAVs [94]. The overall goal of this project is to 

create a comprehensive testing procedure that can systematically test and certify CAVs to be generally safe 

for driving on public roads. The project takes a multi-pronged approach, utilizing a combination of 

techniques. First, it conducts a thorough review of existing AV-involved crashes to identify key factors and 

scenarios that can be used to develop safety test scenarios. These scenarios cover a wide range of 

dimensions, including roadway types, traffic conditions, and environmental conditions. The team then uses 

various simulation tools, such as CARLA, SUMO, and dSPACE, to generate synthetic sensor data that can 

realistically reproduce the performance of physical sensors like LiDAR, radar, and cameras. This synthetic 

data is then used in hardware-in-the-loop (HIL) simulations, where actual vehicle hardware is integrated 

with the simulated environment to measure the vehicle's response and safety performance. The project's 

outputs are intended to provide insights into the safety envelope of CAVs, particularly in identifying "fringe 

cases" or edge scenarios where the systems may be prone to failure. This information can be valuable for 

perception, prediction, and planning algorithms used in CAVs. The report does not explicitly mention the 

potential risks and benefits or the overall cost of the project. However, the focus on improving the safety 

of CAVs through rigorous testing and validation suggests that the project aims to address critical challenges 

and risks associated with the deployment of these technologies. By developing a comprehensive testing 

framework, the project can potentially contribute to the safe and reliable integration of CAVs into the 

transportation system, which could offer significant benefits in terms of improved safety, efficiency, and 

accessibility. 

The University of Pennsylvania developed a VR driving simulator to explore the effectiveness of using 

simulation to educate the public about AVs [95]. The overall goal of this project was to help increase public 

understanding and trust in AVs by providing an immersive, hands-on experience in a safe and controlled 

environment. The input to the system was data from 36 participants who had little prior knowledge about 

AVs. The researchers used a VR driving simulator built on the open-source Carla platform, which allowed 

participants to experience different driving scenarios involving AVs, such as rural, city, and highway 

environments. The output was an assessment of how the simulator experience impacted the participants' 

perceived risk, usefulness, ease of use, trust, and behavioral intention towards AVs. The project utilized 

various AI methods, including vehicle control, sensor data processing, and environment modeling, to create 

a realistic AV simulation. The simulation was designed to be highly interactive, allowing participants to 

switch between manual and autonomous driving modes. This was intended to help participants form a 

mental model of how AVs operate and understand their capabilities and limitations. The report highlighted 

several potential benefits of using a driving simulator for AV education, such as providing a safe and 

flexible environment for testing and demonstration, reaching a wide audience beyond those with driver's 
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licenses, and potentially increasing public trust and acceptance of the technology. However, the report also 

acknowledged some limitations, such as the simulation environment not fully capturing the complexity of 

the real world, the need for improved user interaction, and the small sample size of participants. The report 

did not provide specific cost information for developing and deploying the simulator. 

The University of Minnesota developed the MnCAV autonomous vehicle system to investigate the 

performance characteristics of AVs on highways and local roads in Minnesota [96]. The input to the project 

was experimental testing of the MnCAV vehicle, which was equipped with various sensors including 

cameras, radars, and lidars. The team used AI-based methods for perception, such as the Mobileye camera 

system for lane detection, as well as control algorithms for lateral and longitudinal control of the vehicle. 

The outputs of the project included assessments of the MnCAV vehicle's performance in different scenarios, 

including winter driving conditions, vehicle following in traffic, and navigation through work zones. The 

report highlighted several key findings and recommendations. For winter driving, the team found that even 

a small amount of snow on the road could significantly impact the lane detection capabilities of the vision-

based system, suggesting a need for improved sensing or infrastructure solutions to enable autonomous 

driving in snowy conditions. In the vehicle following tests, the team demonstrated that the MnCAV 

vehicle's adaptive cruise control system was capable of attenuating the propagation of acceleration waves 

through traffic, which could help reduce the severity of traffic backups. However, the report also noted 

challenges with the MnCAV vehicle's performance in work zone scenarios, where obstacles and conflicting 

lane markings caused issues for the lateral control system. The report provided valuable insights into the 

current limitations of autonomous driving systems and suggested areas for future research to address these 

challenges, which could ultimately lead to safer and more efficient transportation solutions. 

Texas A&M University and Virginia Tech developed a project to data mine Twitter to improve AV safety  

[97]. The overall goal of the project was to understand the influence of AV-related events, such as crashes 

and technology announcements, on public sentiment and expectations about AVs. The team then conducted 

topic modeling and sentiment analysis on the collected tweets to understand the most discussed themes, 

such as crashes, fault and safety, technology companies, and public transit. The findings from the tweet 

analysis were then translated into a set of guidelines for public information officers (PIOs) to effectively 

communicate about AV-related events on social media. The report discusses the potential benefits of this 

approach, such as improving public calibration and subsequent acceptance of AVs through timely and 

accurate communication. It also highlights the limitations of traditional Twitter analysis techniques, such 

as the need for domain-specific sentiment dictionaries. While the report does not provide specific cost 

estimates, it emphasizes the importance of this work in guiding proper public communication to support 

the safe adoption and use of AV technologies. 
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Texas A&M University and its partners developed an autonomous vehicle pilot program called 

ENDEAVRide in small towns in Central Texas [98]. The project aimed to explore public perceptions of 

AVs. The study utilized survey data, trip logs, focus groups, interviews, and geospatial AI algorithms to 

collect and analyze data on residents' perceptions, travel behaviors, and traffic safety risks. The outputs 

included insights on public acceptance of AVs, improved accessibility for older adults and people with 

disabilities, and a human-centered interactive dashboard for safety data collection and analysis. The 

findings contribute to the understanding of AV deployment in small towns, particularly in the areas of 

public perception, mobility enhancement, and safety assessment. The report highlighted potential benefits 

such as increased independence for older adults and individuals with disabilities, reduced air pollution, and 

improved fuel efficiency. However, concerns were raised regarding job loss in the driver industry, increased 

trip frequency and duration, and reduced walking. The study also identified factors influencing the 

alignment between perceived and objective traffic safety risks. While the report did not provide specific 

cost information, it emphasized the importance of strong partnerships among local stakeholders, nonprofits, 

and the industry in sustaining innovative programs like ENDEAVRide. 

The University of Michigan developed an integrated AR testing environment for AVs and implemented it 

at the American Center for Mobility (ACM) [99]. The project's overall goal was to create a high-fidelity 

simulation environment that combines a naturalistic driving environment (NDE) with an AR testing system 

to evaluate AV safety performance more efficiently and accurately in closed testing facilities. The input for 

the system is large-scale naturalistic driving data (NDD) collected by UMTRI, which is used to generate 

realistic human driving behaviors in the NDE. The project employed data-driven and optimization-based 

methods to create empirical behavior models and refine them to minimize accumulated errors. The output 

is a distributionally consistent NDE that can generate realistic traffic conditions, including vehicle speeds, 

range distributions, and lane-changing statistics. The integrated AR testing environment is used for testing 

and evaluating AV safety performance, particularly in the areas of perception, prediction, and planning. 

The report mentions that the proposed system has the potential to increase the efficiency of AV performance 

testing, reduce operational costs, and accelerate product validation. However, the report does not provide 

specific information on the potential risks or the cost of implementing the integrated AR testing 

environment. 

The University at Buffalo and the New York State DOT, developed a project to evaluate and test the Olli 

self-driving electric shuttle on the university's North Campus [100]. The project's overall goal was to assess 

the technical feasibility, safety, and reliability of using autonomous vehicle (AV) technology for passenger 

transportation, particularly in a campus setting. The project involved testing the Olli shuttle on a designated 

proving ground collecting and analyzing data from various sensors and systems onboard the vehicle. The 
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research team used simulation modeling and real-world testing to evaluate the shuttle's performance in 

different scenarios, including interactions with pedestrians, other vehicles, and various traffic conditions. 

The project addressed multiple aspects of AV technology, including perception, planning, and control 

algorithms. Additionally, the researchers examined public acceptance of AVs through surveys and 

demonstrations and investigated the regulatory and policy implications of deploying AVs on public roads. 

The report mentions potential benefits such as improved safety, increased mobility, and reduced traffic 

congestion while also acknowledging risks related to public acceptance and regulatory challenges. The 

project included a case study for the Buffalo Niagara Medical Campus, estimating the cost of operating a 

fleet of five Olli shuttles to be approximately $1,365,000 per year under a public plan. However, the report 

does not provide a comprehensive cost-benefit analysis or detailed risk assessment for the broader 

implementation of AV technology. 

Figure A6 summarizes the aforementioned initiatives regarding autonomous vehicles. These works and 

projects generally highlight significant potential benefits of AV technology, including improved safety, 

enhanced mobility, reduced traffic congestion, and increased fuel efficiency. Many studies emphasize the 

potential for AVs to reduce crashes, improve travel times, and lower operating costs. Some projects also 

note the potential for increased independence for older adults and individuals with disabilities. However, 

these benefits come with several risks and challenges. Cybersecurity threats, job displacement in the driver 

industry, and public acceptance issues are commonly cited concerns. Technical challenges include the need 

to address domain adaptation, stability, and transparency issues in AI algorithms, as well as improving AV 

performance in adverse weather conditions like snow. Legal and regulatory challenges, particularly around 

data privacy, ownership, and agency liability, are also noted. While specific cost estimates are not provided 

for many projects, one case study estimated the annual cost of operating a fleet of five autonomous shuttles 

at approximately $1,365,000. Another project suggested potential cost savings of over $1.7 million over 

ten years from reduced AV-related crashes, with a benefit-cost ratio of 7.71. Many reports emphasize the 

need for continued research, flexible policy approaches, and collaboration between government agencies 

and the AV industry. They also stress the importance of public education and communication to build trust 

and acceptance of AV technology. Overall, while the potential benefits of AVs are significant, the reports 

indicate that careful consideration of risks, costs, and implementation strategies is crucial for successful 

deployment. 
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Figure A6 AI-Driven Methods and Applications for Enhancing Autonomous Vehicles. 

Generative AI 

Generative Artificial Intelligence (Generative AI) is an advanced technology that enables machines to 

create original content, like writing, images, and music, by learning patterns from existing data and 

generating new outputs based on that knowledge. Key technologies driving this field, such as Variational 

Auto-Encoder (VAE), Generative Adversarial Network (GAN), Energy-Based Models (EBMs), and 

Generative Pre-trained Transformer (GPT), provide substantial benefits for generating, transforming, and 

refining large and complex datasets [101], [102], [103], [104]. Additionally, they are highly effective in 

modeling data uncertainty. Figure 8 provides an overview of AI-driven methods and applications for 

generative AI in transportation. 

Generative AI offers significant potential to revolutionize the transportation industry by providing 

innovative ways to tackle traffic issues. For instance, in autonomous driving, Generative AI is crucial for 

creating high-quality driving scene images and videos, which play a key role in training and evaluating 

autonomous driving systems [105]. By simulating driving scenarios, autonomous vehicles can engage in 

extensive virtual simulations, enhancing their ability to make accurate decisions in real-world situations. 

Additionally, for tasks like predicting traffic flow, Generative AI can learn from existing traffic data to 

forecast future traffic patterns more effectively [106]. 

Researchers have investigated the use of generative AI in areas such as traffic perception, prediction, 

simulation, and decision-making [107]. Traffic perception is the capability of the transportation systems to 

gather and interpret sensory information from the traffic environment, such as visual information, vehicle 

trajectories, motion, and environmental conditions. This is especially critical for autonomous vehicles, 

which rely on technologies like cameras, LiDAR, and radar to process their surroundings. However, 

challenges arise due to data gaps from obstructed sensors, noise from weather or lighting conditions, and 
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the complexity of traffic environments. Generative AI offers potential solutions to these challenges by 

improving data imputation, traffic estimation, and anomaly detection. Traffic prediction involves estimating 

future traffic conditions, including travel demand, time, flow, and the movements of vehicles and people. 

It is essential for effective urban traffic planning but faces challenges due to the complexity of traffic 

systems, their dynamic nature, and the difficulty in obtaining complete, high-quality data. Generative AI 

offers solutions to these issues by improving prediction accuracy. Traffic simulation models the movement 

and behavior of vehicles and pedestrians for use in urban planning, policy evaluation, and autonomous 

vehicle testing. However, realistic simulations face challenges, including the high cost and difficulty of 

obtaining real-world traffic data, especially in rare or dangerous situations, and the complexity of traffic 

dynamics due to factors like driver behavior, weather, and infrastructure interactions. Traditional deep 

learning models often need large amounts of labeled data and struggle with rare scenarios [108]. Generative 

AI offers solutions by creating realistic traffic scenarios, simulating rare events, and continuously refining 

simulations with minimal real data. Generative AI is enhancing traffic decision-making in autonomous 

driving by creating realistic and diverse traffic scenarios for training systems, which helps vehicles handle 

unpredictable situations more effectively. It can simulate rare but critical events, like sudden pedestrian 

crossings or mechanical failures, providing valuable training data that is not often or difficult to see in real-

world scenarios. Additionally, generative AI improves decision-making by generating enhanced sensor data, 

allowing vehicles to adapt better to challenging environments such as fog or rain, ultimately making 

autonomous driving safer and more reliable in complex traffic situations. 

In recent developments, California's Department of Transportation awarded the first-ever Generative AI 

contract in the state's history to Inrix, a transportation data and software company [109]. Caltrans is seeking 

GenAI solutions to enhance vulnerable roadway user safety and process and interpret diverse data to 

provide Traffic Mobility Insights. The Inrix Compass software uses real-time and historical traffic data, 

along with statewide datasets on crashes and roadway inventories, to assess risk and provide project 

recommendations. According to Inrix, this technology will enable California transportation officials to 

make predictions about every functional road in the state, from rural highways to busy urban thoroughfares. 

In 2020, Inrix launched a new Generative AI-powered product aimed at helping cities manage traffic flow 

more effectively. That same year, transportation departments in five states—Louisiana, Oregon, Tennessee, 

Texas, and Rhode Island—adopted Inrix's real-time traffic data to alleviate congestion, lower air pollution, 

and prevent roadway fatalities [110]. 

Consultants from Deloitte believe that generative AI could also be transformative in transportation logistics 

management [111]. Based on their discussion, Generative AI can significantly enhance transportation 

management by streamlining carrier onboarding through automated verification of credentials and 
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performance evaluations, enabling real-time communication and collaboration between carriers and 

shippers, and optimizing route planning based on AI-driven insights. It can also automate comprehensive 

freight audits, ensuring accuracy and compliance in financial transactions while transforming reporting 

capabilities by generating custom, real-time reports and offering predictive analytics for improved decision-

making and operational efficiency. 

 

Figure A7 AI-Driven Methods and Applications for Generative AI. 

Generative AI offers benefits in transportation by enhancing traffic prediction, simulation, and decision-

making, particularly in autonomous driving. It improves data imputation, anomaly detection, and the 

modeling of complex traffic environments, providing more accurate forecasts and creating realistic 

simulations for training. Generative AI can handle rare events and unpredictable scenarios, improving 

safety and reliability in autonomous systems. Additionally, it streamlines transportation logistics 

management by automating processes such as carrier onboarding, freight audits, and real-time 

communication, enabling better resource optimization and operational efficiency. 

Implementing generative AI in transportation presents several challenges. First, using multi-modal traffic 

data is difficult due to the need for accurate alignment between diverse data sources like camera images, 

weather information, and sensor data. This requires advanced techniques to handle complex data 

correlations and maximize consistency across modalities. Second, capturing the intricate spatio-temporal 

dynamics of traffic—how traffic patterns change over time and space—is a challenge that current models 

struggle to fully address. Third, generative AI models face difficulties when dealing with sparse or missing 

data, as they may generate plausible but inconsistent data or neglect rare traffic patterns, reducing the 

diversity and accuracy of their outputs. Additionally, generative AI systems are vulnerable to adversarial 

attacks, which could compromise safety by manipulating traffic decisions, and these attacks are hard to 

detect. Another key challenge is model interpretability—explaining how generative AI makes decisions, 
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especially in complex scenarios like autonomous driving, is difficult, as these models often operate as black 

boxes. Lastly, meeting real-time requirements is a challenge due to the computational complexity of 

generative models, which must balance accuracy and speed to make split-second decisions in dynamic 

traffic conditions while also handling noisy or incomplete data. 
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APPENDIX B: SURVEY DETAIL 
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APPENDIX C: DETAILED INSIGHTS FROM FOLLOW-UP INTERVIEW 

1. Motivations and Strategic Approaches to AI Adoption 

The interviews revealed diverse strategic approaches to AI adoption in transportation agencies. While some 

DOTs like Texas DOT (TxDOT) have developed formal AI strategic plans through extensive stakeholder 

engagement, others are pursuing more opportunistic, pilot-based approaches. TxDOT's strategic data 

scientist described a comprehensive process involving focus groups with 91 attendees across district 

divisions, resulting in a three-year strategic plan with prioritized use cases based on stakeholder votes. This 

structured approach aligns with our survey findings in Section 4.1, where providing AI-focused training 

programs and developing AI-specific policies were identified as top priorities. 

Professionals from the private sector provided complementary insights into how consulting firms are 

helping shape AI readiness. A Stantec representative highlighted that while many public agencies remain 

cautious, consultants are seeing increasing demand for AI-supported design workflows. Their internal 

initiatives have already tested DevOps pipelines and generative design tools to automate highway modeling 

and plan validation. HDR echoed this trend, emphasizing that real-time traffic management tools—like 

adaptive signal control and video-based pedestrian detection—are pushing the boundaries of what’s feasible 

with AI in live environments. 

Also, AI adoption was primarily driven by operational efficiency goals rather than purely academic interest. 

FDOT focused on improving efficiency and cost management in resurfacing projects, while GDOT initiated 

AI exploration through both policy development and pilot use cases to better understand capabilities and 

risks. WSDOT highlighted the potential of AI to transform massive amounts of manually processed field 

data into proactive decision-making tools, particularly for asset management and safety applications. This 

pragmatic approach aligns with our survey findings in Section 4.1, where we found that most transportation 

professionals (86.8%) have engaged with AI applications, but the majority (70.8%) have less than 5 years 

of experience, indicating that AI adoption in transportation is still in relatively early stages. 

Consulting professionals working with DOTs noted that many agencies are still in the "late adopter" phase 

but recognize the potential of AI for processing vast amounts of field data. As one consultant mentioned, 

transportation agencies are increasingly seeing AI as a tool to achieve "more proactive decision-making, 

particularly for asset management and safety." This observation supports our survey results in Section 4.2.4, 

which identified these domains as having high benefit potential and shorter implementation timeframes. 

The GDOT representative highlighted an iterative approach that combines policy development with 

practical implementation: "Be willing to enter the AI space at several levels simultaneously. Needing a 

policy statement before doing anything will not be very effective." This balanced approach of developing 
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governance frameworks while gaining practical experience through pilots reflects the dual priorities 

identified in our survey, where both policy development (66.7%) and training programs (77.8%) were 

highly endorsed. 

The interviews revealed a common pattern of pragmatic, phased implementation approaches. Rather than 

pursuing comprehensive AI transformation, these agencies favored targeted use cases with clear operational 

benefits. As the GDOT representative advised, agencies should "start AI initiatives across multiple levels 

at once—policy, pilots, and operations" rather than waiting for perfect policy frameworks before 

implementation. This iterative approach allows agencies to learn from practical applications while 

simultaneously developing governance structures. 

2. Primary Application Areas and Implementation Results 

The follow-up interviews revealed a clear pattern of AI applications that closely aligns with our survey 

findings in Section 4.2.4 regarding high-value, near-term application areas. Traffic operations, safety, and 

asset management emerged as consistent focus areas across multiple agencies. 

In traffic operations, several interviewees highlighted signal control optimization and traffic management 

applications. One consultant described Las Vegas's implementation of the Derq system, which uses video 

cameras and edge computing at 10-20 intersections to "improve safety and reduce delay by approximately 

20%." GDOT has developed a retrieval-based system to help Traffic Management Center operators quickly 

access standard operating procedures (SOPs) from poorly organized documentation—a practical 

application of generative AI for knowledge management. 

Asset management applications were equally prominent. TxDOT reported using connected vehicle data to 

predict battery failures with 96% accuracy, enabling proactive maintenance scheduling. Several 

interviewees mentioned automated asset inventory using computer vision, with one consultant noting their 

work on "origin-destination studies" and "sight design optimization." These applications directly support 

our finding in Section 4.2.1 that Map data and Traffic data are considered high-quality, low-difficulty data 

sources for AI implementation. 

The interviews also highlighted innovative applications in engineering and design processes. One 

consultant described using generative AI to design "90% with prompts and background data" and 

developing a tool to convert CAD to GIS for land acquisition tracking. TxDOT has implemented a 

predictive tool for estimating labor hours for engineering contracts, addressing what one interviewee 

described as an "unlikeable task that might contribute to poor or inconsistent quality" when done manually. 

These examples demonstrate how AI can not only improve operational efficiency but also enhance decision 

quality in complex domains. 



   
 

115 
 

HDR’s experience with edge AI in Las Vegas—through the Derq system—demonstrates how AI can 

meaningfully reduce traffic delay (~20%) and improve pedestrian safety. The system combines real-time 

video analytics with adaptive control hardware installed at intersections. Meanwhile, Stantec has used 

generative AI for preliminary design automation, claiming up to 90% design generation completeness from 

structured prompts. They’ve also worked on CAD-to-GIS conversion tools to support land acquisition 

planning, examples that show AI's potential in both civil engineering and data integration contexts. 

FDOT has made significant progress in pavement condition forecasting using machine learning models for 

raveling detection, which were refined over several years to improve classification accuracy. They also 

began automating crack and ride rating detection while maintaining quality assurance through manual 

verification. Similarly, WSDOT has explored AI in pavement and geotechnical asset management, 

developing predictive models to support maintenance planning. 

A common theme across agencies was the evolution from initial experimental models to increasingly 

refined systems through iterative improvement cycles. As the FDOT representative noted, their machine 

learning models required multiple iterations as initial algorithms "underperformed for severe cases, 

necessitating retraining and supplemental data collection." This reflects the importance of continuous 

learning and adaptation in AI implementation. 

3. Data Quality Challenges and Management Strategies 

Data quality emerged as a critical challenge across all interviews, strongly reinforcing our survey findings 

in Section 4.2.1 about data preparation difficulties. TxDOT's strategic data scientist specifically highlighted 

the challenge of inconsistent data formats, noting that "highway names have 15 variations of the same 

highway in the database," requiring extensive cleanup for string matching. FDOT encountered issues with 

underrepresented categories in training datasets, requiring continuous data collection and labeling to 

improve model accuracy. GDOT noted that their SOP documentation, while valuable, was poorly structured, 

and older infrastructure data was often outdated or incomplete, complicating digital twin applications. 

WSDOT similarly highlighted that legacy data frequently lacks the detail necessary for effective AI models. 

The interviewees consistently emphasized the importance of data collection and preparation as foundational 

to successful AI implementation. One consultant mentioned that for asset management applications, "good 

models require current and comprehensive data," while another noted that "legacy data often lacks detail," 

complicating digital twin development. WSDOT's representative emphasized that transportation agencies 

must "prioritize investments in data infrastructure to support scalable AI solutions." 

These findings strongly corroborate our survey results in Section 4.2.1, which indicated varying levels of 

data preparation difficulty across different data types. Specifically, our survey found that Text data 



   
 

116 
 

presented significant challenges in data cleaning, while Vision data posed difficulties in data labeling—

issues directly experienced by the interviewed agencies. Additionally, half of all survey respondents (50.0%) 

identified data management skills as a significant skills gap, as noted in Section 4.1.6, further emphasizing 

the critical importance of data quality in successful AI implementation. These observations also directly 

support our survey finding that establishing robust data management systems was one of the top three 

recommended actions for transportation agencies. The interviews provided concrete examples of how data 

quality issues can undermine AI effectiveness, with one consultant noting that their machine learning model 

for raveling detection "underperformed for severe cases, necessitating retraining and supplemental data 

collection." 

To address these challenges, agencies have adopted proactive data management strategies. WSDOT, for 

instance, updates its pavement data annually to ensure current information for their predictive models. 

FDOT emphasized the importance of supplemental data collection to address gaps in training datasets, 

particularly for severe cases that were initially underrepresented. These findings reinforce our survey results 

regarding data management as a critical foundation for successful AI implementation. As the WSDOT 

representative emphasized, “AI tools are only as effective as the data feeding them,” suggesting that 

transportation agencies should prioritize investments in data infrastructure before pursuing advanced AI 

applications. 

4. Risk Perception and Mitigation Strategies 

The follow-up interviews provided nuanced perspectives on risk perception that aligned with our survey 

findings in Section 4.2.3 regarding the relationship between experience and risk awareness. Several 

interviewees confirmed that deeper understanding of AI technologies often leads to greater risk recognition. 

The FDOT representative noted that deeper exposure reveals more nuanced risks, particularly around 

financial accountability and data bias. The GDOT representative acknowledged that while AI has potential, 

"assumptions in the data and over-trust in outputs pose real risks." WSDOT similarly highlighted concerns 

about generative AI hallucinations and poor model performance resulting from inadequate data quality. 

One consultant explicitly voiced concern about "people who use generative AI but don't understand the 

statistical model, trust it implicitly," while another worried about potential "overreliance on AI outputs and 

poor results due to data inconsistencies." These comments directly support our survey finding that 

professionals with more limited AI experience (Group 1) often demonstrate greater skepticism toward 

emerging AI applications. 

To mitigate these risks, agencies emphasized the importance of human oversight in AI implementations. 

FDOT maintains strong quality assurance processes despite automation, suggesting a hybrid validation 

model. GDOT focuses on tools that support rather than replace decision-making, particularly for repetitive 
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tasks. WSDOT stressed that final decisions should still rest with human experts, especially for safety-

critical applications. 

The agencies also reported evolving governance frameworks to address data privacy and security concerns. 

GDOT avoids recording video to mitigate personally identifiable information (PII) risks, while WSDOT 

discourages the use of external tools like ChatGPT due to data leakage concerns. These approaches reflect 

the need for transportation agencies to develop robust data governance policies alongside AI 

implementation. 

5. Workforce Development and Training Approaches 

The interviews revealed that workforce development for AI remains an emerging priority across 

transportation agencies, consistent with our survey findings in Section 4.1.4 that nearly half of respondents 

(48.3%) reported receiving no formal AI-related training. Several interviewees described early-stage or 

informal training approaches, with TxDOT recently launching an "AI 101 course" in December 2024, 

covering basic AI concepts, machine learning, and generative AI. At FDOT, AI training is informal and 

decentralized, with most knowledge transfer occurring through hands-on involvement in data collection 

and system development. GDOT acknowledged being early in the process and is looking to peer agencies 

for guidance. WSDOT reported agency-wide efforts as still in early stages, with discussions around tools 

like GitHub Copilot but no formal training programs in place. 

The WSDOT representative highlighted the need for change management and practical user training, such 

as prompt engineering for generative AI applications. This aligns with our survey's emphasis on providing 

AI-focused training programs as the most widely endorsed recommendation for enhancing organizational 

AI readiness. Private sector organizations appear somewhat more advanced in their training approaches, 

though challenges remain. One consultant mentioned that their firm "bought 10,000 copilot licenses, didn't 

use them because of fear," highlighting the importance of change management alongside technical training. 

Another noted that most AI knowledge transfer occurs through "hands-on involvement in data collection 

and system development" rather than formal programs. 

These observations align with our survey finding that technical skills (73.3%) and hands-on experience 

(66.7%) represent the most significant AI skills gaps in the transportation sector. The interviews suggest 

that addressing these gaps requires both structured training programs and practical application opportunities. 

As one consultant emphasized, "change management and training are important" for successful AI adoption, 

requiring "buy-in from leadership." 

6. Effective Partnerships and Collaboration Models 
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The interviews provided insights into different collaboration models for AI development. FDOT reported 

strong internal collaboration with materials and asset management teams, as well as partnerships with 

manufacturers and equipment integrators for hardware/software alignment. GDOT's efforts have primarily 

been with private vendors, with limited academic partnerships due to slow research timelines, though this 

flexibility is improving.  One consultant similarly noted that vendor collaboration has "advanced AI pilots 

faster than academia."  

However, other interviewees emphasized the value of diverse partnerships, with one suggesting that "a mix 

of academics and industry people" works well. TxDOT's strategic data scientist mentioned using enterprise 

data platforms like Jupyter notebooks for internal development, suggesting that in-house capabilities can 

complement external partnerships. WSDOT expressed interest in university collaborations but has not yet 

established formal agency partnerships for AI development. 

The interviews highlighted specific examples of effective collaboration, including partnerships with 

technology providers like Derq for edge computing applications and firms like Stantec for flood prediction 

tools. These case studies suggest that transportation agencies might benefit from a diversified partnership 

approach, combining internal cross-functional teams, vendor relationships for immediate implementation 

needs, and academic collaborations for longer-term research. 

7. Governance, Ethics, and Accountability 

The follow-up interviews provided valuable insights into emerging governance frameworks for AI in 

transportation agencies. Several interviewees described developing formal AI policies, with one consultant 

noting requirements that "anything output from AI has to be quality controlled" and another mentioning 

policies against "uploading sensitive information" to LLMs. 

Data privacy emerged as a particular concern, with one interviewee noting that their agency "doesn't record 

any video to protect PII." Another emphasized the importance of ensuring attribution in AI-generated 

content, noting that for their Retrieval Augmented Generation (RAG) application, they "need to make sure 

the citations are correct and accurate." 

These governance approaches align with our survey finding in Section 4.1.7 that addressing security and 

ethical concerns was endorsed by 59.3% of respondents as a priority action. The interviews suggest that 

transportation agencies are developing policies that balance innovation with appropriate safeguards, 

focusing particularly on data privacy, decision accountability, and transparency in AI use. 
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APPENDIX D: SUPPLEMENTARY FIGURES 

 

ANOVA Results: F=2.93, p=0.099, No significant difference 

Figure D1 Differences of AI Benefits by Organization Type - Transportation Asset Management 
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Turkey HSD test results: p=0.016, Significant difference 

Figure D2 Differences of AI Risks by Organization Type - Transportation Asset Management 
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ANOVA Results: F=0.15, p=0.71, No significant difference 

Figure D3 Differences of AI Benefits by Organization Type - Transportation Safety 
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ANOVA Results: F=2.21, p=0.15, No significant difference 

Figure D4 Differences of AI Risks by Organization Type - Transportation Safety 
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ANOVA Results: F=3.29, p=0.081, No significant difference  

Figure D5 Differences of AI Benefits by Organization Type - Transportation Operations 
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ANOVA Results: F=0.16, p=0.69, No significant difference 

Figure D6 Differences of AI Risks by Organization Type - Transportation Operations 



   
 

125 
 

 

ANOVA Results: F=0.48, p=0.49, No significant difference 

Figure D7 Differences of AI Benefits by Organization Type - Digital Twins 
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ANOVA Results: F=2.37, p=0.14, No significant difference 

Figure D8 Differences of AI Risks by Organization Type - Digital Twins 
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Tukey HSD test results: p=0.017, Significant difference 

Figure D9 Differences of AI Benefits by Organization Type - Autonomous Vehicles 
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ANOVA Results: F=0.93, p=0.35, No significant difference 

Figure D10 Differences of AI Risks by Organization Type - Autonomous Vehicles 
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ANOVA Results: F=0.13, p=0.72, No significant difference 

Figure D11 Differences of AI Benefits by Organization Type - Generative AI 
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ANOVA Results: F=0.11, p=0.75, No significant difference 

Figure D12 Differences of AI Risks by Organization Type - Generative AI 
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