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Executive Summary: 

This study focused on tracking the in-service performance of 30 pavement sections. The collected 

information covers pavement history from mix design to on-site distress surveys. Such information 

is used to  

1. Model mix properties dependency of performance,

2. Model performance deterioration with time, as a function of construction and loading

characteristics, and

3. Propose a framework for managing pavement life cycle information to utilize new

computing technologies in upgrading the Wisconsin DOT pavement life cycle

management.

The study started with evaluating the Wisconsin pavement network performance to highlight 

critical distresses commonly present. These distresses are alligator cracking, longitudinal cracking, 

transverse cracking, and rutting. the distribution of theses distresses among the selected pavements 

is comparable with that of the network. Furthermore, the test sections' history shows that these 

sections were built using 16 unique approved mix designs.  The data and materials collected from 

these projects served to model the performance dependency on mix properties.  

The report structure is divided such that it covers a review of previous studies on this topic, 

description of selected field projects and their general information. The collection process of the 

pavement life cycle history data and development of the relational geospatial database of this 

history are detailed in chapter 2. In order to compare the performance of the selected projects to 

the overall network performance, chapter 3 is structured to study the performance of the entire 

Wisconsin pavement database. The overall performance distribution and construction quality of 

the selected projects are then presented to show how comparable the selected projects are to the 

full network. Each project is discussed in more detail to illustrate the different types of distresses 

experienced and to evaluate where these distresses are caused by an obvious construction-related 

irregularity in terms of quality or consistency. Chapter 4 is designed to conduct a generalized 

analysis of the interaction between the different pavement characteristics and the noticed 

performance. This analysis is conducted on a one-to-one comparison between a given 

characteristic and given distress. In addition, this chapter clarifies other correlations such as the 

comparison between wheel-path and between-wheel-path material performance, and the 

correlation between the IDEAL and SCB testing at intermediate temperature 
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Chapter 5 focuses on the influence of mix design on in-service performance. The influence is 

quantified using multivariate regression modeling. This chapter is aimed to provide the foundation 

of building performance engineered mix design where the relationship between laboratory-

measured properties and in-service performance is available. Chapter 6 focuses on the modeling 

of performance deterioration post-construction. This chapter details the machine learning tools 

used in building holistic models of predicting pavement deterioration as a function of full 

pavement history including structural design, production and construction quality, and traffic. The 

unique aspect of the modeling presented in chapter 6 is that it treats the network as individual 

segments rather than separate projects. Therefore, the resultant database is over 200 miles 

long, combining data from selected field pavements and additional data from another 30 

pavements. Chapter 7 summarizes the findings and presents the conclusions of this study. This 

chapter also details recommendations regarding the implementation of a geospatially 

relational database in managing the Wisconsin pavement network.  

Influence of Mix Properties on Performance 

The multivariate analysis shows that the observed distresses can be correlated as follows: 

A. Alligator cracking is correlated with:

a) Age of mix,
b) Intermediate true grade of the binder (G*.sinδ),
c) The cracking index measured using the IDEAL testing protocol.

B. Rutting is correlated with:

a) Mix dust-to-binder ratio,
b) Pavement structure,
c) Mix dynamic modulus,
d) Mix Densification.

C. Transverse cracking is correlated with:

a) Winter climate,
b) Binder low-temperature relaxation,
c) Percent fines in the mix,
d) Mixture low-temperature fracture energy.

These relations are critical in building performance engineered mix designs. It can be noted that 

these performance measures are dependent on measurable properties of the mix, or other external 

factors such as climate or structural design.  
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Performance deterioration modeling 

The framework used to create the deterioration model is based on geo-relating all pavement life 

cycle data such that the change in performance with time can be connected to localized parameters. 

These parameters include material produced quality data, pavement placement, and compaction 

quality data, accumulated traffic loading during service, accumulation of climate loading in terms 

of temperature or forms of precipitation. This framework provides the essentials for developing a 

data-driven pavement life cycle management system. The data used in this study is expanded 

beyond the selected field sections. It covers over 200 miles of pavement sections belonging to the 

Wisconsin DOT network.  

Given the complexity of the data and the database architecture, advanced computing techniques 

are employed in developing the deterioration models.  Using Gene Expression program as one of 

the machine learning techniques employed in this study, the teaching process of the model resulted 

in developing dependency between the pavement overall quality and critical parameters such as:  

1. As-built pavement thickness,
2. Production volumetrics,
3. Construction placed density,
4. Traffic,
5. Time in years.

While this model is showing promising accuracy as demonstrated by the validation process, it has 

the potential to continuously improve as long as new data is fed into the database. This requires 

the expansion of the geo-referencing of the pavement life cycle data to include the entire network. 

Rather than proposing a rigid model to be applied at all times and situations, this study presents 

the concept of life cycle pavement management. This requires treating the data pertaining to a 

given pavement section as a living organism. Therefore, the entire life cycle of data can be 

connected to a specific location and performance. If the network data is upgraded to this level, 

then developing adaptive models is a straight forward process. This is because the machine 

learning algorithms are available as end used applied tools rather than requiring programming. In 

addition, as new pavements are being constructed, the data pool continues to grow, which allows 

these models to become more precise.  This can be achieved through the following steps: 

1. Divide the network into segments for monitoring performance. The current segmentation

is about one mile long. This is too long of a segment, especially because only 1/10 of this

segment is monitored as a sample. It is suggested that the segmentation be about ½ a mile

long at most.
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2. Use new technology in distress surveying such as imaging techniques. This allows rapid

surveys to be conducted more frequently, and on a greater area of the pavement at each

segment. In addition, it provides the bases for geotagging the distresses to investigate

location-based patterns.

3. Conduct non-destructive testing on pavement sections to obtain a baseline of mechanical

stability and location.

4. Pavement structural plans should contain locations by the station and GPS coordinates.

This is achievable at an easier level if the DOT adopts 3-D modeling in project

documentation and plans.

5. Quality data collected during material production or during placement and compaction

needs to be tagged with their GPS locations. Proper labeling of data needs to be a

requirement as much as passing specification limits.

6. Maintenance activities must be recorded by location and time.

7. Data for all aspects of the pavement life cycle must be accessible and connected to allow

for retrieval of complete pavement history.

8. Pavement machine learning deterioration models must be updated regularly as part of the

management plan. The model update needs to be synchronized with distress survey efforts

and maintenance activities.

Finally, the implementation of the aforementioned recommendations has the potential to be a 

resource for adopting performance-based specifications, either at the mix design level or the 

production and construction level. The data-driven trends should serve as a verification tool for 

developing new specifications limits in order to connect laboratory activities with in-service 

performance. The growth of the database within the network for all classes of pavements must be 

utilized at scheduled times as a means of self-validation of specification limits, construction 

practices, maintenance plans, and rehabilitation. They can serve for project scoping through 

evaluating the history of similar pavements with respect to location, traffic level, environmental 

condition, or structural design which can be easily retrieved to evaluate performance and apply 

improvements when needed. 
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1. Introduction and Background 

1.1 Introduction 

Predicting pavement performance is always a point of interest for practitioners and researchers. 

Understanding the mechanism of pavement deterioration and being able to accurately predict it is 

necessary for better pavement design. Pavements are being designed to maintain a satisfactory 

level of performance within the targeted service life. However, there are many cases in which 

pavement deterioration rates do not follow the expected service life goals. Furthermore, given the 

evolution of specifications, construction methods, materials, testing methods, and in-service 

pavement monitoring over the last twenty years, it is logical to expect an extended service life and 

a more accurate deterioration rate prediction for our pavement infrastructure. Yet this is not the 

case.  

Current performance prediction models are based on parameters such as climate, traffic, 

environment, material properties, etc. While all these factors play an important role in 

performance, the quality of construction and production are as important as the other factors. The 

designed properties of Hot Mix Asphalt (HMA) pavements, known as flexible pavements, are 

subjected to variation during production and construction stages. Therefore, the final product may 

not be the exact reflection of the design. In almost any highway project, these variations are 

common and are likely to occur from different sources, by various causes, at any stage. These 

variations often have considerable impacts on the long-term performance of a project (Kenley 

2012). Asphalt mix design parameters such as mix volumetrics and asphalt content and 

construction factors like in-place density are examples of the pavement properties that could vary 

from the design to the as-constructed condition. Quality Management Programs (QMP) are trying 

to minimize and control these variations and keep them at the desired levels. However, these 

variations are often neglected in performance prediction methods.  

Flexible pavement systems, as multiscale and multiphysics phenomena, require extending the 

analysis capacity to cover more than a single traditional discipline. Pavement systems experience 

multiple interacting mechanics work at different scales, which span over many science and 

engineering disciplines. From the chemistry of the constituent materials and their chemical 

reactions to the coupled mechanic and dynamic behavior of the different phases in the system, and 
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even other physical processes such as heat transfer, pore water movement, and concentration field; 

all have their own impact on the system. Therefore, it becomes essential to discrete the system into 

understandable pieces to enhance the accuracy of understanding their performance. Due to the 

advances in the field, simplification of this challenging problem and simulating the 

performance/deterioration through the single value indicators are no longer satisfactory.  

Finally, most of the currently available prediction methods are based on deterministic approaches. 

Thus, their practicality is limited to cases in which all the needed inputs from the materials, 

environment, traffic, underlying layers, etc., are known and reliable. Given the uncertainty 

associated with the manufacturing and lifecycle of flexible pavements, such cases are often rare. 

Against this background, recent technological advancements have enhanced the researchers’ 

capabilities of storing and analyzing historical pavement data. This not only allows quantifying 

the uncertainty with ranges of possible values and associated probabilities but also helps to extract 

trends that may not be found by conventional methods. Utilizing these advancements in pavement 

performance simulation would surely enhance the practicality and accuracy of developed models.  

This research will investigate the in-service performance of selected pavements. Data collected 

regarding the pavements' life cycle from construction to in-service performance is used to establish 

a connection between mix design and performance, as well as model deterioration in performance 

with age. This is achieved by combining the state of the knowledge with a creative, experimental 

design for establishing statistical correlation and engineering cause and effect relationship between 

influential independent factors and in-service performance.  

This study provides a path to examining the effectiveness of current quality control measures by 

implementing its data into deterioration modeling. The fundamental challenge in achieving the 

highest quality levels remain in the variable nature of the process of road building. If the optimum 

performance is expected from a given mix design, lots produced must match the design exactly. 

For example, if a target compaction level is expected to be optimum for a given mix, then this 

target needs to be achieved during production. However, this has never been the case in pavement 

construction, and will probably not be the case in the near future. It is understood that the current 

WisDOT specification targets (for mix production or compaction) will not be met every time and 

those mixes will fall within a range of variability to be affordable and realistically constructive. 

This study aims to accept this reality and incorporate it into the analysis process account for the 
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inherent variability in modeling pavement in-service performance.  The modeling approach also 

provides an understanding of how the interaction of influential independent variabilities affects 

performance. How is the variability of performance affected by the variability of material 

production and pavement construction? Answers to these questions are crucial in evolving an 

effective performance based-data driven specification and quality programs.  

For this study, 12 projects from the state of Wisconsin have been selected for the analysis. The 

pavement related information of these projects was extracted from the appropriate sources in the 

state of Wisconsin and other agencies. The data was processed appropriately to serve the purpose 

of the study. Data collection was finalized by the appropriate mechanical testing of project field 

cores. The detailed statistical analysis and the modeling were later built on this information.  

With respect to the performance of pavements, this study describes a method in which four 

common flexible pavement distresses such as Rutting, Alligator, Longitudinal, and Transverse are 

being considered as the performance indicators. These distresses were selected after realizing their 

significant presence within the WisDOT highway network. By using an adaptive approach, these 

qualitative indicators converted to the quantitative values.  

The following sections in this chapter will discuss the selected projects to identify asphalt 

parameters and performances. The current state of performance prediction of flexible pavements 

and the role of common QMP indicators on the performance will be discussed according to the 

literature. Also, different modeling approaches and the use of soft computing techniques will be 

shown.  

The last chapter will provide a summary of the topics covered in this study. The conclusion of the 

analysis conducted, and comments regarding the implementation of the findings. 

1.2  Studied Projects 

This research involved evaluating the in-service performance of 12 highways in Wisconsin. They 

ranged in the years of construction from 2003 to 2015. All distress surveys were taken in 2018. 

Table 1-1 lists the selected projects and their information. The locations of the studied roadways 

are shown on the map in Figure 1-1. 
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Table 1-1 List of selected in-service highways investigated in this research 

Project ID Route No. County Construction Year Type of Project Surface Layer 
Thickness (in)* 

Average 
PCI** 

8530-14-71 STH 77 Ashland 2014 High Recycle Project 3.687 100.0 
1491-08-71 USH 141 Marinette 2013 High Recycle Project 4.468 99.8 
3070-00-72 STH 73 Dane 2014 High Recycle Project 4.178 94.11 
1110-10-71 STH 26 Fond du Lac 2015 High Recycle Project 4.437 100.0 
7010-01-61 STH 21 Juneau 2015 FHWA density demonstration 3.875 100.0 
1620-03-70 STH 13 Wood 2016 Air-void regression 4.250 100.0 
2240-13-60 STH 36 Waukesha 2015 High-recycle NCHRP 4.075 100.0 
5939-00-61 STH 80 Iowa 2014 Thin overlay project 1.562 100.0 
1595-09-60 USH 8 Oneida 2014 Thin overlay project 1.531 93.1 
9040-05-70 STH 17 Oneida 2003 Perpetual Pavement 3.687 56.2 
8600-02-71 STH 178 Chippewa 2003 Premature Failure 3.312 69.0 
3180-10-70 STH 11 Racine 2003 Premature Failure 3.437 83.9 

* Average measurements of the field core samples.
** PCI measured by the Wisconsin DOT

The information provided in Table 1-1 shows that most of the pavements are demonstrating an 

adequate level of PCI for the age. The lowest PCI value for 13 years old (at the time of the last 

survey)  is STH 17 with PCI of 56.2. STH 178 and 11 are designated as premature failure 

pavements. The average PCI values for these pavements do not reflect such designation. In fact, 

STH 11 is showing a good level of PCI after 13 years of service. These observations will be further 

evaluated in the following chapters of the project.  

The research plan focused on evaluating in-service performance as well as pavement history. 

Characterization of these pavements included: 

• Collection of mix production data to track variation in production quality.

• Collection of pavement compaction data to track density at the time of construction.

• Collection of field cores to:

o Validate pavement thicknesses.

o Mechanically evaluate the cores.

o Test the performance of extracted binders.

o Evaluate aggregate gradation.

• Conduct a field distress survey for pavement sections.
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Figure 1-1 Location of studied projects in Wisconsin 

1.3  Field Coring and Performance Survey 

In order to conduct the on-site investigation, a minimum of two sections was selected from each 

highway. Each testing section is 500 ft long. Some of the highways contained different 

experimental sections or different mix designs at the time of construction. Therefore, the sections 

were chosen in appropriate locations to cover these differences. All these sections were located at 

the 0.3 mile after the starting point of their associated SNs, except for STH 36.  

All these sections, except the ones for STH 36, are located at the same location where the DOT 

performance surveys are being conducted. However, in the case of STH 36, this was not possible 

due to the construction of different experimental sections in the short distances. For this project, 

there are five experimental sections within only two SNs. Therefore, the section locations do not 

overlap with the WisDOT surveys. Incorporating all sections in this study led to the creation of 30 

test sections. These sections are detailed below. 
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Table 1-2 List of test sections investigated in this study 

Section Age Thickness Latitude Longitude SN PCI 
STH 21-A 2 3.88 44° 1'32.27"N 90°13'49.33"W 24130 100 
STH 21-B 2 4.00 44° 1'30.45"N 90°10'22.58"W 24150 100 
STH 21-C 2 3.75 44° 1'29.23"N 90° 7'34.50"W 24170 100 
STH 17-A 13 3.63 45°37'46.37"N 89°22'54.39"W 20055 53 
STH 17-B 13 3.75 45°38'15.41"N 89°22'42.22"W 20060 58 

STH 178-A 15 2.63 45° 4'0.03"N 91°15'52.38"W 132140 82 
STH 178-B 15 4.00 45° 5'32.25"N 91°13'56.06"W 132170 67 
USH 141-A 3 4.13 45°18'49.75"N 87°59'28.12"W 122600 100 
USH 141-B 3 4.81 45°21'22.15"N 87°57'17.82"W 122630 96 
STH 13-A 2 4.38 44°41'20.51"N 90°12'7.88"W 13670 100 
STH 13-B 2 4.13 44°41'45.52"N 90°12'42.75"W 13680 100 
STH 36-A 1 4.13 42°51'21.42"N 88° 6'25.50"W 46880* 100 
STH 36-B 1 4.63 42°51'27.72"N 88° 6'7.51"W 46880* 100 
STH 36-C 1 4.75 42°51'38.32"N 88° 5'36.48"W 46880* 100 
STH 36-D 1 3.63 42°52'25.57"N 88° 3'24.76"W 46890* 100 
STH 36-E 1 3.25 42°53'5.18"N 88° 2'36.06"W 46890* 100 
STH 73-A 4 4.22 42°53'18.10"N 89° 3'9.45"W 93470 97 
STH 73-B 4 3.88 42°54'34.92"N 89° 3'21.11"W 93480 93 
STH 73-C 4 4.88 42°59'48.83"N 89° 4'18.32"W 93540 85 
STH 73-D 3 3.75 43° 0'54.84"N 89° 4'17.62"W 93550 98 
STH 11-A 8 3.50 42°39'57.13"N 88°14'20.94"W 8330 89 
STH 11-B 8 3.38 42°41'17.16"N 88°13'6.28"W 46750 99 
STH 77-A 4 3.50 46° 9'16.17"N 90°50'43.75"W 97030 100 
STH 77-B 4 3.69 46° 9'18.15"N 90°44'44.76"W 97070 100 
STH 80-A 4 1.58 43° 8'12.94"N 90°21'32.01"W 98780 96 
STH 80-B 4 1.58 43° 9'47.40"N 90°20'50.02"W 98800 100 
USH 8-A 2 1.37 45°34'5.25"N 89°37'41.82"W 2890 100 
USH 8-B 2 1.37 45°36'30.53"N 89°33'6.83"W 2930 97 
STH 26-A 2 4.63 43°46'59.03"N 88°40'30.47"W 30600 100 
STH 26-B 2 4.25 43°50'3.24"N 88°40'29.54"W 30630 100 

*Some of the sections from project STH 36 are located within the same SN. This is the NCHRP project that has used 
multiple mix designs in a short distance next to each other. 

For each of the sections shown in the table, a coring plan is devised to evaluate the mixture and 

binder properties within each of the samples. In addition, production, construction, and 

performance data were collected for the projects of which these sections belong. When available, 

all the data is geo-related such that the relationship between pavement history and performance 

can be investigated.  
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The coring plan is represented in the following diagram. The plan is designed such that evaluation 

of change in performance between wheel path (WP) and between wheel path (BWP) is conducted, 

enough cores for mechanical and binder testing is available, and overlapping distresses with binder 

and mixture properties is possible.  

Figure 1-2 An example of the coring plan for STH 17, section A 

The following flow chart shows how the cores were employed to characterize the mixes, binders, 

and aggregate. 

1.4  Core Characterization Testing Plan 

a) 

b)
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Figure 1-3 Flow chart for core testing a) mixture testing plan, b) binder and aggregate testing 

The following tests were conducted on the field core samples.  

1.4.1 Semi Circular Bending Test (SCB) 
After verifying the air void content of the cores, the samples were cut to obtain two half-discs for 

the Semi-Circular Bend (SCB) test. The cutting process was made with the use of a circular 

diamond blade to obtain a disc of 50±1 mm in thickness. Each disc was cut in half and a notch was 

made in the middle of each SCB test specimen such that the depth of the cut was 15±1 mm and 

the width was 1.5±0.1 mm. Upon completion of the cutting process, the test specimens were placed 

in a water bath set at a temperature of 25o C for 2-2.5 hours prior to testing. For low-temperature 

fracture testing the samples were conditioned at -18⁰C for 3 hours.  

The SCB test is a three (3) point bend test that is used to measure the ability of asphalt mixture 

samples to resist crack propagation. The test can be used to characterize crack propagation at both 

intermediate and low temperatures. For the purposes of this study, the test is conducted at both 

intermediate temperature and the low temperature. The low temperature used for this test was -18o 

C, based on the low-temperature grading of the design binders in the mix, which extracted from 

the original mix design documents. The test procedures were in accordance to the AASHTO TP 

124, “Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using 

the Flexibility Index Test (FIT)” for intermediate temperature testing, and AASHTO TP 105-13 

“Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry 

(SCB)” for the low-temperature testing. 

1.4.2  Indirect Tensile Asphalt Cracking Test (IDEAL) 

Indirect tensile asphalt cracking test known as IDEAL is a practical cracking test that can be 

performed with regular indirect tensile strength test equipment. This test was conducted on 

samples taken from both WP and BWP locations from all 30 investigated sections. The test was 
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run at 25⁰C on 60 mm width, 150 mm diameter disc-shaped samples. The samples are the same 

samples that were used for the IDT dynamic test. The procedure of this test is discussed in more 

detail in NCHRP Project 195 report (2019). An example of the test results on a sample from project 

STH 77 section B is presented in Figure 1-4. 

Figure 1-4 Example of IDEAL test results for STH 77, section B 

The cracking test index for IDEAL is calculated according to Equation 1-1:  

𝑪𝑪𝑪𝑪𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 = 𝒕𝒕
𝟔𝟔𝟔𝟔

× 𝑮𝑮𝒇𝒇
|𝒎𝒎𝟕𝟕𝟕𝟕| × (𝒍𝒍𝟕𝟕𝟕𝟕

𝑫𝑫
)               (Equation 1-1) 

where fracture energy Gf is the work of fracture (the area of the load vs. vertical displacement 

curve) divided by the area of cracking face; parameter m75 and l75 are the slopes of the load-

displacement curve, and the displacement at the post-peak point where the load is reduced to 75% 

the peak load, respectively. Parameters of t and D are the thickness and diameter of the sample 

respectively.  

1.4.3 Indirect Tension Dynamic Test 
The dynamic modulus of the core samples from 30 sections was measured using indirect tension 

(IDT) mode. This test was conducted on samples taken from both WP and BWP locations. For this 

study, 60 mm width disc-shaped samples with the diameter of 150 mm were cut and prepared from 

the surface pavement layer of the field cores. Using MTS® machine loading frame, dynamic load 

at frequencies of 0.1, 0.5, 1, 5, and 10 Hz was applied on the disc-shaped asphalt samples at room 
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temperature and in IDT mode. A video extensometer device was used to measure the gauge length 

extension between two vertical and two horizontal defined points at the center of the sample. The 

vertical and horizontal gauge lengths were marked at 50.8 mm prior to the test. Assuming the plane 

stress state, Hondros solution (Hondros 1959) for the IDT specimens subjected to a strip load was 

used to define the state of stress and strain in the sample. In this study, Kim et al.’s suggested 

method  (2007) was used to analyze the measurements and find the complex modulus at each 

tested frequency. 

1.4.4 Gmb Measurement (CoreLok©) 

The Bulk Specific Gravity of the compacted sample, also known as Gmb, of the field core samples, 

was measured by using a Corelok vacuum sealing device. The test was conducted on samples that 

were cut and dried for IDT and IDEAL tests.  This method is shown to determine the Gmb of 

compacted samples with greater accuracy than other methods, such as water displacement, 

parafilm, and dimensional analysis (Cooley et al. 2003).   

1.4.5 Intermediate Continues Grading Temperature 

In order to measure the rheological properties of the field core extracted binders, a dynamic shear 

rheometer (DSR) machine was used to test Intermediate Continuous Grading Temperature. This 

is the temperature at which the binder reached 5000 kPa  for  its  G*sin  δ.  The DSR measures 

complex shear modulus (G*) and phase angle (δ) giving a complete analysis of the asphalt binder’s 

rheological behavior. This test was conducted to characterize the viscous and elastic behavior of 

asphalt binders at intermediate temperatures. In DSR testing, the asphalt sample is sandwiched 

between a fixed plate and an oscillating plate which oscillates back and forth across the sample at 

10 rad/sec (1.59 Hz) to create a shearing action. DSR tests were conducted on 8 mm plates. This 

test was conducted on both WP and BWP samples for the 16 available mix designs. 

1.4.6 Bending Beam Rheometer and ΔTc 

For low-temperature grading, a bending beam rheometer (BBR) was used, in accordance with 

AASHTO T 313, to determine the asphalt binder stiffness and relaxation rates. In BBR testing, a 

load is applied to the center of a binder beam and stiffness is calculated based on measured 

deflection and standard beam properties. The m-value which is the slope of the stiffness curve at 

60 seconds, is a measure of how the asphalt binder relaxes the load-induced stresses. BBR tests 
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were conducted to find the low failure temperatures of both relaxation and stiffness of the beam. 

The differences in these temperatures were calculated as the ΔTc parameter. This test was 

conducted on both WP and BWP samples for the 16 available mix designs. 

1.4.7 Aggregates Gradation Parameters 
Sieve analysis was performed on the extracted aggregates from the field cores. The percentage of 

the passing particles at each sieve number was used to fit the polynomial aggregate gradation 

curves. The fitting curve order was selected based on the least calculated error. The developed 

gradation curves were used to calculate the Coefficient of Curvature (Cc) and Uniformity 

Coefficient (Cu). These parameters are defined as; 

𝑪𝑪𝒖𝒖 =
𝑫𝑫𝟔𝟔𝟔𝟔

𝑫𝑫𝟏𝟏𝟔𝟔

(Equation 1-2) 

𝑪𝑪𝒄𝒄 =
𝑫𝑫𝟑𝟑𝟔𝟔

𝟔𝟔

𝑫𝑫𝟔𝟔𝟔𝟔 ×  𝑫𝑫𝟏𝟏𝟔𝟔
 (Equation 1-3) 

Where Dn is the particle size at which n%  of the particles are finer. 
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2. Data Collection and Database Development

2.1 Developing a Holistic Database 

In this study, the challenge was to reference and coordinate the different referencing systems to 

create a cohesive geo-reference system for the investigated pavement projects. Therefore, the 

research approach started with connecting the different data sources into geo-referenced locations 

and compiling them into a holistic relational database. Data pertaining to three stages of the 

pavement life; namely material production, construction, and in-service performance, are collected 

initially for compliance in the case of production/construction, and for maintenance/liability in 

case of performance. Therefore, the data housing, labeling, and level of details are not designed to 

be interconnected or meant for further analysis beyond these objectives. Example of such 

databases available in the WisDOT is shown below in Table 2-1. 

Table 2-1 Databases available for the study 

Source Database Description 

Pavement 
Inventory Files 
(PIF) 

Descriptions and pavement distress data for each sequence number (SN) are 
provided in the PIF database, including International Roughness Index (IRI), 
Pavement Condition Index (PCI), rutting depth, and individual pavement distress 
measurements (Alligator, Transverse, and Longitudinal Cracking).  This database 
also includes highway number, surface year, and segment termini description, a 
directional lane of measurement, date of measurement, region number, and county. 
Data from the PIF provide a direct measure of flexible pavement performance over 
a flexible base. 

Construction 
Reports/Plans 

Attributes of projects constructed in each year are detailed, including such fields as 
prime contractor, base type and/or preparation (DGBC, OGBC, milled, pulverized, 
rubblized, etc.), thickness asphalt layer placed, mixture design (SMA, Superpave 
ESAL series, etc.), lane-miles of paving, and project identification number.  The 
paving year and highway number in this database merged with the SN in the Meta 
Manager and PIF databases to develop a holistic database. 

Highway Quality 
Management 
System 

This database developed by Atwood Systems contains important data for QMP 
material properties.  This database cannot be electronically linked to the databases 
above and requires manual extraction. The research team obtained electronic mix 
designs and QMP quality control data charts and moving averages to supplement 
this database. 

Different pavement related agencies or even different divisions within an agency often have data 

collection methods that are not necessarily compatible with the others. Therefore, it is common to 

see a variety of methods to reference a pavement section’s location within the network of 

roadways. For example, in this study contractors are using a construction project numbering 

scheme of station numbering, while the DOT performance division use the highway sequence 
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number (SN) method for referencing the performance surveyed locations. The stations are length-

dependent numbers which are based on the construction plans and length of the roadway. On the 

other hand, Sequence Numbers (SNs) are DOT defined segments of the highways that have 

referenced locations. These references are based on either landmarks or distances. NCHRP 

Synthesis 335 (2004) reported a survey in which 96% of highway agencies indicated using the 

milepost/logpoint method for referencing, while 15% additionally use landmarks in referencing. 

The milepost referencing method requires each roadway to be given a unique name and/or number, 

and a distance along the route from a given origin to define points along the route. The research 

team decided to use a linear referencing system, which consists of a set of procedures and a method 

for specifying a location as distance, or offset, along with a linear feature, from a point with a 

known location. Thus, this method includes three components; network of highways, location 

referencing method, and datum. The location reference method refers to how to identify a single 

location in the field. The primary domains of location referencing methods include administrative 

(e.g., county), linear, geodetic/geographic, and public lands survey. Common linear location 

referencing methods include route/milepost, link node, reference point/offset, and street address 

(Flintsch et al. 2004). 

Based on the available information in the PIF database, the number of SNs for each project is first 

determined. Locations of start and end of SN are identified using the landmark references in the 

PIF. For some of the SNs, due to the unavailability of a detectable landmark, the length of 

consecutive SNs is used to determine the start and end location of each SN. Finally, the GPS 

location of each SN was determined and used to match the station locations in the plans. These 

steps were repeated for all the selected projects to form a database network-level positioning 

system that facilitates the connection of data points in the database. Based on the points above, 

data belonging to the selected projects are collected. All the construction and production data 

points are given stationing locations following the numbering in the plan’s sheets. The data is then 

grouped by SNs.  At this stage, the production, construction, and performance data can be 

connected. Data points for these three main components of the pavement history are then 

overlapped based on their geo-location. This allows for investigating localized variability in 

construction, the relation between production variability and construction variability, and the effect 

of variability and compliance on long-term performance. The following schematic (Figure 2-1) 

presents the process followed in creating the relational database.  
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Figure 2-1 Process to connect data sources to obtain the relational database 

This method of conversion selected due to its convenience as well as the increasing use of geo-

referencing methods in the pavement industry. In fact, nowadays, the Geographic Information 

System (GIS) and Global Positioning System (GPS) technologies are propelling the use of 

coordinate-based referencing systems to identify points along routes. NCHRP Synthesis 335 

(2004) stated the importance of using such systems for different pavement authorities nationwide. 

It identified that 35% of surveyed agencies using longitude and latitude, and 13% using state plane 

coordinate or related systems to reference the location of their performance measurements. Several 

works have been done in the field of pavement management that tried to improve the quality of 

decision making, analyzing, and reporting by the use of geographic information. (Lee et al. 1996, 

Harter 1998, Abkowitz et al. 1990, Osman and Yoshitsgugu 1994, Jalali et al. 2019). Geospatially 

referencing the data has a wide application in Airport Management (Parsons 2010), Transportation 

Management (Peng 2007), Environmental Resource Management (Zhang et al. 200), and 

Earthquake Management (Kim et al. 2017, Khademina et al. 2012). The key aspect of relating all 
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these systems is linking the separate databases by using their geographical location (Medina et al. 

1999). 

Figure 2-1 does not include activities such as the digitization of hard copies and some other details. 

The figure is intended to present the outline for creating a relational database assuming all data is 

digitally available in a format that allows manipulation using commercial database software.  For 

this study, Microsoft Access software is used to execute and process the large data points and 

integrate the different databases into one relational database. The Access-based relational database 

is built on three individual core databases, namely, Production, Construction, and Performance.  

The design of database relationships is shown in Figure 2-2. The structure of the database is such 

that it allows for extracting queries related to a level of quality understudy, yet all information with 

respect to other components maintains their connection. For example, in order to investigate the 

effects of HMA density on the rutting of pavements within the database, an Access-based query 

was used with rutting as the search object. The query will then include all pavement sections with 

rutting as reported distress. In addition, it will pull the construction and production data of these 

sections. All the data retrieved is then presented in one table that includes the different fragments 

shown in Figure 2-2. Therefore, the extracted information is used for further analysis of the 

optimized investigation process, while the structure of the global relational database remains to be 

separate and independent. By using this feature, many queries regarding the effects of binder 

content, Va, VMA, In-Place Density on the individual distresses such as rutting, alligator, 

transverse and longitudinal cracking were extracted and analyzed, with results shown in the next 

chapters. 
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Figure 2-2 Database structure created using Microsoft Access® 

2.2 Calculation of Deterioration Index (DI) 

The pavement performance data is recorded by the DOT for different distresses.  The distresses 

are surveyed every two years for a given SN. For flexible pavements, the distress survey is 

conducted to calculate the Pavement Condition Index (PCI) according to the ASTM D6433 (2016). 

However, for this study, individual distresses are more valuable for tracking the potential 

correlation of quality control indicators to pavement durability. Based on the PCI method, each 

distress is recorded in terms of severity level and extent. The recorded data obtained from the DOT 

underwent multiple steps in order to integrate it into the relational database for analysis. Therefore, 

four types of distresses are studied as representatives of the long-term performance of the pavement 

were selected to use for analysis. These types of distresses are as following: 
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1. Rutting; which can be the result of a permanent reduction in the HMA volume due to 

consolidation, traffic densification, or permanent movement with the constant volume due to 

the plastic deformation or shear (Morovatdar et al. 2019). It can also be a combination of them 

(Roque et al. 2004). This type of distress was selected to investigate the effects of construction 

and production parameters like density and asphalt content on it.  

2. Alligator Cracking; also called Fatigue Cracking, happens due to the maximum tensile strain 

at the bottom of the asphaltic layer of a flexible pavement after repetitions of enough number 

of vehicular loads (Huang 2004). 

3. Longitudinal Cracking; is an extension of top-down cracking that begins from the road 

surface and gradually extends to the depth of pavement, and it occurs along with the vehicle 

driving direction of the road. This type of crack is also a point of interest since it is widespread 

and has detrimental effects on the serviceability of the pavement.  

4. Transverse Cracking; is happening roughly perpendicular to the pavement’s centerline.  

Given that the majority of the studied projects do not include any overlays, most of the 

transverse cracks are correlated with the thermal shrinkage of the pavement. Although in a 

few overlay projects, reflection crackings are also recorded as transverse cracking data. The 

literature reports a high dependency of transverse cracking on the pavement production and 

construction parameters (Roberts et al. 1991) 

According to Shahin (2005), there is a well-established procedure of essential steps in developing 

the Pavement Condition Index (PCI) value, which is a widely accepted parameter for describing 

the pavement distress state (ASTM D6433-09) (2017). However, this study focuses on the four 

types of distresses mentioned above. Based on the PCI method, the first step is to define each 

pavement distress types, the level of severity, and extent of distress. The next step is calculating 

the deduct value by using the deduct curves developed by Shahin (2005). The deduction value 

curves are shown in Figure 2-3, Figure 2-4 and Figure 2-5 for rutting, alligator cracking, and 

longitudinal/transverse cracking respectively.  
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Figure 2-3 Deduct value curves for different severities of rutting (after Shahin 2005) 

Figure 2-4 Deduct value curves for different severities of alligator cracking (after Shahin 2005) 
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Figure 2-5 Deduct value curves for different severities of longitudinal/transverse cracking (after 

Shahin 2005) 

In order to calculate the “Deterioration Index” values, the data related to the four selected distresses 

of rutting, alligator, longitudinal, and transverse cracking were identified and isolated from the 

state DOT performance survey in PIF database. This data contains information regarding the 

numbers, area, and severity of each distress. The density of different distresses at each severity 

level was independently calculated based on the length and area of the surveyed sections. Finally, 

the equations describing the curves shown above are used to convert the density at a given severity 

level into a deduct value and the total deduct values for all three levels of severities are added 

together representing a value for the overall deterioration in the pavement due to this given distress. 

This value is called Deterioration Index or DI, and each distress type is now receiving a single 

value reflecting its level of deterioration as a score out of 100. Therefore, the high DI represents a 

high deterioration of the pavement. 

This process has been employed by one of the authors in a previous study (Bahia et al. 2013). This 

step is conducted to isolate the degree of deterioration per distress type rather than the generalized 

PCI. As a result, each SN possesses five distinct deterioration indices; one for each of the four 

distresses, and one represents the summation of all distresses deterioration indices. The DI values 

were calculated for all conducted performance surveys. By comparing the survey time and 

construction time of the pavement, the age of pavement at the time of the survey was determined. 

By matching the DI values versus the age of the SN for each performance survey, the deterioration 
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rate also can be easily calculated. During the process, it was noticed that in some cases, the 

pavement type for several SN was recorded differently than other data sources like the construction 

maps. Also, due to the contradiction of PIF information of construction year with the construction 

information, the reported construction years in the contractors’ documents are used. 

Separate field surveys were conducted by the research group in accordance with the Wisconsin 

Pavement Distress Survey Procedures to evaluate the pavement performance independently. Based 

on the results, DI values calculated with the same procedure. However, since the conducted survey 

reported distresses for every 25 ft and at three different locations of pavement including right wheel 

path, left wheel path and centerline, the calculated DI values have higher resolution compared to 

the WisDOT performed survey. This higher resolution enabled the identification of localized 

problems and construction-related problems. Based on the field surveys, it is observed that there 

is a high level of construction-related longitudinal cracks on the selected pavements. The research 

team decided to separate the construction-joint longitudinal cracks from the in-lane ones in order 

to better understand the sources of the performance problems. Therefore a separate DI value was 

calculated for the construction-joint longitudinal cracks.   

It is important to note that DI is calculated based on the curves provided in ASTM D6433. The 

authors of this report did not validate the relationship between the distresses and their 

corresponding DI. This is beyond the scope of this project. The DI method provides a useful tool 

to quantify each distress independently for further analysis.   

In addition to the field surveys, using the already identified GPS coordinates of the SNs ending 

and starting points, Google Earth satellite, and street photos were used to verify the extent of 

reported distresses in the field. The problem with this approach was the date of the available photo 

images in the Google database. Having clear and up-to-date photos of the selected projects was a 

challenge. However, field surveys and taken photos helped to overcome this issue.  

2.3 Environmental Factors 

The Environmental parameters were all extracted from the database of the National Oceanic and 

Atmospheric Administration (NOAA). The database provides information per county for each 

state. There are multiple weather stations within each county. In the state of Wisconsin, the relevant 

climate information of the nearby stations to each project was extracted, and they were ranked 
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based on their distance to the center of the project. The three nearest stations were used for further 

data interpolation and construction of an accurate climate database for each project. Names of the 

three nearest stations and their corresponding distance factor are presented in Table 2-2. The 

Haversine formula was used to calculate the distance between the coordinates of the project center 

and each station. These distance factors are calculated based on normalizing these distances to the 

farthest station in the county. Therefore, the lower the factor, the closer the station.  

Table 2-2 Three nearest weather stations to each project and their distance factor. 

Project County Station 1 Station 2 Station 3 Distance 
Factor 1 

Distance 
Factor 2 

Distance 
Factor 3 

STH 
77 Ashland Ashland 0.5 WNW Ashland 3 S Madeline Island 0.505 0.550 0.295 

USH 
141 Marinette Marinette Peshtigo Wausaukee 0.092 0.212 0.413 

STH 
73 Dane Arboretum 

University Wis McFarland 0.8 E Stoughton 0.446 0.446 0.377 

STH 
26 

Fond Du 
Lac Fond Du Lac 2 SW Fond Du Lac Co 

Airport Fond Du Lac 0.268 0.278 0.294 

STH 
21 Juneau Mauston 1 SE Necedah 2 SE Necedah 5 WNW 0.343 0.106 0.100 

STH 
13 Wood Babcock 1 WNW Marshfield 

Experimental Farm Pittsville 0.1 NE 0.104 0.229 0.029 

STH 
36 Waukesha Mukwonago 0.5 N Big Bend 0.1 Wnw Mukwonago 5.3 W 0.414 0.496 0.355 

STH 
80 Iowa Dodgeville Dodgeville Wisconsin Mineral Point 7.3 

Ene 0.860 0.746 0.915 

USH 8 Oneida Rhinelander Oneida 
Co Airport Rhinelander Rhinelander WJFW 

TV 12 0.306 0.265 0.280 

STH 
17 Oneida North Pelican Rhinelander 4 NE Rhinelander WJFW 

TV 12 0.262 0.290 0.309 

STH 
178 Chippewa Cornell 4.1 W Jim Falls 3 NW Holcombe 0.263 0.381 0.199 

STH 
11 Racine Burlington Rochester WWTP Union Grove 0.279 0.342 0.314 

Using these distance factors, a weight factor for the interpolation for each station was calculated. 

These weight factors are presented in Table 2-3. The data for each station were extracted for the 

years 2000 to 2019. Using the weight factors, the climatic information of each project is calculated. 

In the case of the absence of the data for a given station, the next closest station was substituted.  
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Table 2-3 Weight factors for the climate data interpolation for the three nearest stations 

Project County Station 1 Station 2 Station 3 Weight 
Factor 1 

Weight 
Factor 2 

Weight 
Factor 3 

STH 77 Ashland Ashland 0.5 WNW Ashland 3 S Madeline Island 0.28 0.25 0.47 
USH 
141 Marinette Marinette Peshtigo Wausaukee 0.60 0.26 0.13 

STH 73 Dane Arboretum University 
Wis McFarland 0.8 E Stoughton 0.31 0.31 0.37 

STH 26 Fond du 
Lac Fond Du Lac 2 SW Fond Du Lac Co 

Airport Fond Du Lac 0.35 0.34 0.32 

STH 21 Juneau Mauston 1 SE Necedah 2 SE Necedah 5 WNW 0.13 0.42 0.45 

STH 13 Wood Babcock 1 WNW Marshfield 
Experimental Farm Pittsville 0.1 NE 0.20 0.09 0.71 

STH 36 Waukesha Mukwonago 0.5 N Big Bend 0.1 WNW Mukwonago 5.3 
W 0.33 0.28 0.39 

STH 80 Iowa Dodgeville Dodgeville Wisconsin Mineral Point 7.3 
Ene 0.32 0.37 0.30 

USH 8 Oneida Rhinelander Oneida 
Co Airport Rhinelander Rhinelander 

WJFW TV 12 0.31 0.36 0.34 

STH 17 Oneida North Pelican Rhinelander 4 NE Rhinelander 
WJFW TV 12 0.36 0.33 0.31 

STH 
178 Chippewa Cornell 4.1 W Jim Falls 3 NW Holcombe 0.33 0.23 0.44 

STH 11 Racine Burlington Rochester WWTP Union Grove 0.37 0.30 0.33 

Among the all available climate parameters in the original database, the research team found the 

following ones more correlated with the scope of this study.  

Precipitation related factors; 
• Total annual snowfall, measured in millimeter (SNOW).
• Total annual precipitation, measured in millimeter (PRCP).
• The number of rainy days in a given year (DP01).

Temperature related factors; 
• Cooling Degree Days; A cooling degree day is every degree that the mean temperature is

above 18.3 C degrees during a day (CLDD). this factor considers the time and severity of
heat at the same time. For example, if the temperature at day first is recorded at 20.3 C,
and 21.3 C for the second day, the Cooling Degree Days would be 5.

• The total number of days above 32.2 C (DX90).
• The total number of days below -17.8 C (DT00).

2.4 Traffic Loading 

An accurate account of traffic loading conditions substantially contributes to the proper evaluation 

of the in-service pavement performance (Morovatdar et al. 2020). In this research effort, the traffic 

data was collected from the WisTransPortal System. The traffic volume data at 72 Wisconsin 
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counties are being constantly collected at nearly 30,000 sites on streets and highways around the 

state. These measurements are available online and are categorized for each county and highway. 

For this study, the historical traffic reports and measurements of the 12 studied projects were 

extracted and reviewed. The average of the daily and annual passing traffic volume measured at 

the different sections of each of the 12 studied highways was calculated. This information was 

further used to calculate both the average daily traffic of each project as well as the total traffic 

over the course of pavement life.  



37 

3. Database Statistics

3.1  Statistics of WisDOT Highway Network 

3.1.1  Four Studied Distresses 
The percentage of sections showing signs of damage (non-zero DI) with respect to the age of 

pavement is presented in Figure 3-1. This data is obtained from the PIF database for 2017. The 

presented percentages are calculated out of the total segments within the DOT network. The 

distribution of these distresses shows that 66% of the WisDOT road network have transverse 

cracking issues after only 4 years from construction. 

Figure 3-1 Percentage of distresses pavement sections at different ages in Wisconsin 

With respect to the extent of damage, the average DI values of WisDOT segments showing 

distresses are provided in Figure 3-2. The data is distributed with respect to age. The distribution 

is showing that these sections continue to have a good rating up to 6 years of service. Between 6-

8 years the rating can downgrade to fair. But for ages beyond 8 years, the poor condition starts to 

emerge.  
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Figure 3-2 Average DI of four studied distresses at different ages in Wisconsin 

3.1.2  Other Types of Flexible Pavement Distress in WisDOT Network 
As the following tables show, the significance and presence of the other types of distresses are not 

comparable with the four above mentioned ones. The distribution shown below validates the 

decision to proceed with the four selected distresses as primary indicators of in-service 

performance. Figure 3-3 demonstrates a minimal number of sections exhibiting signs of the other 

distresses up to 8 years of service. After more than 8 years, only patching, block cracking and 

bleeding at a low level of severity are present in a noticeable portion of the network.  
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Figure 3-3 Distribution of other types of distresses reported in PIF 
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3.2 Statistics of Studied Test Sections 

The following graphs show the extent of the observed distresses for the on-site performance survey 

results conducted by the research team on the 30 studied sections. Based on the results, it was 

found that there is a discrepancy between PIF and research group surveys. However, both 

measurements confirmed that the dominant distresses in the field are still the four discussed 

distresses namely rutting, alligator, longitudinal and transverse cracking. The following graphs are 

showing their distribution and severity.  

 
Figure 3-1 Rutting distribution within the investigated sections 

The rutting distribution in Figure 3-4 shows that most of the sections have minimal rutting 

problems. The 95% confidence interval for the 30 investigated sections is between DI values of 

1.2 to 6.7. These values are in line with the observed network performance, indicating that rutting 

is not a major performance issue for Wisconsin, but it may be observed occasionally.  
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Figure 3-2 Alligator cracking distribution within the investigated sections 

The alligator cracking distribution shows a 95% confidence interval on the mean alligator DI of 

5.1 to 25.2.  This indicates that some sections may have a high level of the distress, but the majority 

are still higher than the fair rating. This matches with the network analysis. However, a closer 

investigation of the factors contributing to this distress is needed.  
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Figure 3-3 Longitudinal cracking distribution within the investigated sections 

Longitudinal cracking, as shown in Figure 3-6, follows the same distribution as the alligator 

cracking. Yet, for longitudinal cracking the majority of the observed cracking are joint longitudinal 

cracking. Therefore, the analysis conducted on factors influencing this distress only focused on 

observed in-lane cracks.  
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Figure 3-4 Transverse cracking distribution within the investigated sections 

For the transverse cracking, the test sections also matched the network distribution. In fact, all test 

sections exhibited transverse cracking. The confidence interval of the mean cracking DI for the 

test sections ranged from 52.3 to 75.5. This is a high level of deterioration for this distress given 

the ages of the pavement sections investigated. In addition, the median of the DI values overlaps 

with the mean indicating a balanced distribution of this high level of transverse cracking.  

3.3 Distribution of Quality Control Indicators 

This section presents the distribution of the sampled data used in this research study. It is important 

to study the distribution of quality measures to understand the boundaries of the analyses that 

follow. In addition, the distribution provides an overview of the variability and conformity of the 

quality indicators at the global level. The 30 studied pavement sections can be considered a sample 

of the Wisconsin roadway network since they cover 16  unique mix designs and distributed across 

the state. Furthermore, the performance of these sections matches that of the network as illustrated 

in section 3.2.  
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Figure 3-5 Distribution of mix air voids during production 

Figure 3-6 Distribution of mix VMA during production 
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Figure 3-7 Distribution of asphalt content during production 

Figure 3-8 Distribution of placement density during construction 
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The distributions shown in Figure 3-8 to Figure 3-11 illustrate the high conformity of the 

production and construction quality measures to the Wisconsin specifications. Also, the 

distributions show a relatively narrow range for quality measures variability.  

3.4 Per Project Evaluation 

For each of the highways investigated in this study, a summary of the collected production, 

construction and performance data is presented. Please note that some of the highways did not 

demonstrate any distresses according to the PIF data.  The performance graphs are based on the 

recorded performance measurements in 2017 version of the PIF.   

3.4.1  STH 11 (Designation: Premature Failure) 

Figure 3-9 STH 11 distress distribution over the length of the project 

Figure 3-10 Va reported values during production 
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Figure 3-11 VMA reported values during production 

Figure 3-12 Placement density during production 

This particular pavement was labeled as a premature failure roadway. The distress data recorded 

on the PIF shown in Figure 3-12 were recorded at the age of 14. The entire length of the project is 

showing a consistent level of transverse cracking and longitudinal cracking. 

The distress distribution shown in Figure 3-12 indicates that despite the age of pavement, the 

severity of the recorded distresses is not high. Quality indicators are showing that construction 

quality is highly conforming to the specs while production is showing a high variability. The 

production Va ranges from a high of 5.8% to a low of 2.9%. The same observation can be made 

for the production VMA, which ranges from 12.5 to 16%.  
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3.4.2  STH 13 (Designation: Air Void Regression) 
- No Distress

Figure 3-13 Va Reported values during production 

Figure 3-14 VMA reported values during production 

Figure 3-15 Placement density during construction 

This project was only two years old at the time of this research. According to PIF, no distresses 

were recorded. The quality indicators are highly conforming with a low level of variability. While 
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this project was designed for regressed air void content, average Va is 3.52% with a range of 2.9 

to 4.2%. For the air void regression project, this range of Va is similar to other production data for 

mixes targeting the 4% Va.  

3.4.3  STH 17 (Designation: Perpetual Pavement) 

Figure 3-16 STH 17 distress distribution over the length of the project 

This project was 14 years old at the time of the latest recorded distresses in the PIF.  The distress 

distribution is shown in the above Figure 3-19. It shows a significant level of rutting compared to 

the network distribution. The other distresses recorded (Longitudinal, Alligator, and Transverse) 

are less than or comparable to other projects of the same age. 

Due to the unavailability of construction placement data, positioning of Va and VMA is not 

possible. Therefore, the distribution graphs are presented here based on overall data without geo-

referencing.  
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Figure 3-17 Va reported values during production 

Figure 3-18 VMA reported values during production 

The production data show a wide range of Va values (2.2-4.9%) with the majority of the tested 

lots having a Va under 4%. Yet the 95% confidence interval for Va is between 3.6% and 3.8%, 

which demonstrates consistency in production.  The level of variability in the VMA follows the 

same trend.  
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3.4.4  STH 178 (Designation: Premature Failure) 

Figure 3-19 STH 178 distress distribution over the length of the project 

This project was constructed in 2003. After 14 years is it showing a high level of rutting and 

alligator cracking compared to the network averages for this age. It is also showing a significantly 

high level of longitudinal cracking compared to the network. On the other hand, the transverse 

cracking is lower than the averages for this age.  

Due to the unavailability of construction placement data for this project, positioning of Va and 

VMA is again not possible. Therefore, the distribution graphs are presented here.  
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Figure 3-20 Va reported values during production 

Figure 3-21 VMA reported values during production 

The production data shows a wide range for Va, however, the range is still conforming for the 

most part, to specification limits with a narrow 95% confidence interval. The same is applicable 

to VMA.  
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3.4.5  STH 21 (Designation: FHWA Density Demonstration) 
- Zero Distress

Figure 3-22 Va reported values during production 

Figure 3-23 VMA reported values during production 

Figure 3-24 Placement density during construction 
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This project was constructed in 2015. It is showing no distresses according to PIF. As expected, 

the average placement density is higher than the specification requirements by more than 3%. 

Production quality is highly conforming with minimal variability.  

3.4.6  STH 26 (Designation: High Recycled Project) 
Zero Distress 

Figure 3-25 Va reported values during production 

Figure 3-26 VMA reported values during production 
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Figure 3-27 Placement density during construction 

This project was constructed in 2015. No distresses are recorded in PIF. Few lots are falling outside 

of the specifications limit for Va and in-place density. But the overall production and construction 

are consistent. It is important to note that in-place density distribution shows a wide variety within 

each sequence number. This may be caused by the RAP content in the mix. However, no 

information regarding the amount of RAP present in the mix and at which lift was found with 

respect to this pavement.  

3.4.7 STH 36 (Designation: High-recycle NCHRP) 
- Zero Distress

Figure 3-28 Va reported values during production 
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Figure 3-29 VMA reported values during production 

Figure 3-30 Placement density during construction 

This project was constructed in 2015. No distresses are recorded in PIF. Production data are 

conforming to specifications with minimal variability. Placement data is conforming but highly 

variable. Similar to STH 26, such variability could be influenced by the RAP content. This project 

was constructed with an asphalt mix with a 31% binder replacement.  
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3.4.8 STH 73 (Designation: High Recycled Project) 

Figure 3-31 STH 73 distress distribution over the length of the project 

Figure 3-32 Va reported values during production 
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Figure 3-33 VMA reported values during production 

Figure 3-34 Placement density during construction 

This project was constructed in 2014. It is showing minimal distresses according to PIF. Two of 

the segments within the project are showing a moderate level of longitudinal cracking.  This project 

continues the trend of high RAP projects with a wide range of in-place density. No information 

was found regarding the RAP utilization in the mix of this pavement.  
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3.4.9 STH 77 (Designation: High Recycled Project) 

Figure 3-35 STH 77 distress distribution over the length of the project 

Figure 3-36 Va reported values during production 

Figure 3-37 VMA reported values during production 
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Figure 3-38 Placement density during construction 

This project was constructed in 2014. It is showing minimal transverse cracking according to PIF. 

The in-place density is showing a wide range within some of the sequence numbers. In some cases, 

the minimum on-site compaction was not achieved. This can be attributed to the RAP content. 

Furthermore, due to the lack of distresses, it is difficult to assess if this high variability poses a 

detrimental influence on pavement performance. None of the high RAP projects are showing 

enough distresses to further investigate the relationship between RAP, in-place density, and 

performance. This pavement was constructed with a mix containing 33% RAP.  

3.4.10 STH 80 (Designation: Thin overlay project) 
Zero Distress 

Figure 3-39 Va reported values during production 
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Figure 3-40 VMA reported values during production 

Figure 3-41 Placement density during construction 

This project was constructed in 2014. It is showing no distresses according to PIF. The quality data 

retrieved is incomplete.  
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3.4.11 USH 141(Designation: High Recycled Project) 

Figure 3-42 STH 141 distress distribution over the length of the project 

Figure 3-43 Va reported values during production 
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Figure 3-44 VMA reported values during production 

Figure 3-45 Placement density during construction 

This project was constructed in 2013. It is showing minimal transverse cracking according to PIF. 

The production Va data is highly conforming with minimal variability. The VMA is not 

conforming in multiple sections with a high level of variability. Construction in-place density data 

exceed the minimum limit for the majority of sections. Unlike other high RAP pavements, this one 

does not exhibit the high variability in compaction density. The percent RAP utilization in this mix 

was not found. But it could be speculated that RAP was used in the binder lift rather than the 

surface lift, which contributed to the consistent in-place density during construction.  



64 

3.4.12 USH 8 (Designation: Thin Overlay Project) 

Figure 3-46 USH 8 distress distribution over the length of the project 

Figure 3-47 Va reported values during production 
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Figure 3-48 VMA reported values during production 

 
Figure 3-49 Placement density during construction 

This project was constructed in 2014.  PIF is showing minimal distresses. Quality data is 

incomplete.  

3.5 Summary 

• Five out of the twelve studied projects showed zero distress. Projects STH 26, STH 21, 

STH 13, STH 36, and STH 80 are the projects with no signs of rutting, alligator, 

longitudinal or transverse cracking problems. 

• Geo-tagging the data was not possible for two of the studied projects, STH 17 and STH 

178. Also, for STH 80 and USH 8, there were limited data points. 

• Projects STH 77, USH 141, and STH 73 showed low deterioration. While the main 

performance problem for STH 73 was longitudinal crack, with low severity, the USH 141 

only showed transverse cracking problems. 
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• For STH 77, the high recycle project, no significant performance differences were observed 

between the high RAP and normal HMA sections. 

• STH 11 is labeled as a premature failure project. However, the detailed analysis showed 

that the deterioration of this project at the age of 14 is not high. An overall good 

conformation to the specs was observed for the quality data of this project. 

• It was noticed that STH 13, known as the Air Void Regression project has no sign of 

distress after 2 years of construction. Also, the range of Va was comparable with the other 

product data for mixes targeting 4% Va. 

• Project STH 178 has the highest deterioration rate among the 12 studied projects. This 

project was designated as a premature failure project. In particular, the level of longitudinal 

cracking was observed to be higher compared to the average of the network. On the other 

hand, the transverse cracking was lower than the network average. 

• STH 21 showed no distress with a relatively high in-placed density. The average in-place 

density of this project is about 3% more than the specification targets. 

• Similarly, more than 16 miles of project STH 26 showed no sign of distress at age 2. While 

there are few lots in this project that have lower Va and in-place densities than the 

specification limits, the overall production and construction are conforming to the 

specifications. It is also observed that the presence of RAP did not cause an early 

deterioration in this project. 

• STH 36 has no recorded rutting, longitudinal, alligator, and transverse cracking at age 2, 

according to the PIF database. This is the high recycle NCHRP project. The placement 

density shows high variability, that might have been caused by the presence of the RAP 

content. 

• STH 73, with a minimal deterioration at age 3, has a wide range of in-place density. 

• Some of the sections in STH 80 did not meet the in-place density specification targets. 

However, the project has shown to have only minimal transverse cracking at age 3. This 

project has also used RAP materials, and yet no meaningful correlations with distresses 

were found. 

• There was not much information about STH 80 regarding the quality of construction and 

production. Also, there is not any type of distress in this project, according to the PIF. 
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• Minimal transverse cracking was observed for USH 141, according to the PIF. While VMA 

is highly variable in this project, the in-place density and Va are showing good 

conformation to the specifications. The average in-place density of this project is about 3% 

higher than the specification targets, with a narrower range of variability compared to the 

other high RAP projects. 

• Project USH 8 has minimal rutting and cracking problems at age 3, according to the PIF. 

The quality data is incomplete for this project, which makes it difficult to make any 

conclusion regarding the effects of construction and production quality on the performance.  
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4. Exploratory Analysis

This chapter serves to investigate the potential influence of individual parameters on in-service 

performance. This is critical to isolate potential colinearities and understand direct correlations 

before further levels of analyses are conducted. The investigation conducted in this chapter is based 

on the information gained from the on-site distress surveys, core testing. As can be noted, the PIF 

data under-represented the distresses experienced by the pavements. All test sections exhibited 

some form of distresses, while the PIF reported no distresses or distresses at the much lower extent. 

4.1 Description of Sections’ Measured Performance 

In addition to the field coring, performance measurements were also conducted on the investigated 

projects. In this regard, different pavement sections were selected at each highway project, in a 

way that each project had at least two representative sections. For some of the projects, due to the 

possibility of having multiple mix designs according to the original mix design documents, more 

than two pavement sections were chosen. The performance per section is shown in Figure 4-1. 

This figure shows the DI value of each distress for all studied pavement sections.  

The performance recorded for the different sections belonging to the same highway was 

comparable. STH 17, STH 178, and STH 80 demonstrated different performance between the 

sections. The graph shows that all roadways experienced different levels of transverse cracking. 

The previous chapter showed that all the projects were constructed at a high level of conformity 

for the most part. It was found that all four types of distresses exist in the studied projects. Among 

all distresses, transverse cracking was found to be the predominant type. Field observations 

indicated that transverse cracking is not believed to be a construction-related issue. There was also 

no indication that the other distresses could be related to systematic construction or production 

deficiencies. The following sections attempt to investigate possible correlations between material, 

loading, and environmental factors to the observed performance.  



69 

Figure 4-1 Distribution of distresses in 30 studied sections 

The measured distresses shown in Figure 4-1 do not appear to be related to construction quality or 

project designation. Therefore, the analysis approach will proceed by investigating the relationship 

between the data population with other potential parameters.  

4.2 Performance Comparison of “Wheel Path” (WP) and “Between Wheel Path” (BWP) 

Cores 

The coring plan includes separating cores into two groups; wheel path (WP), and between wheel 

path (BWP) cores. Before proceeding with the analysis, it is important to investigate if the core 

location should be incorporated as a variable. Therefore, cores collected from the sections are 

evaluated to quantify the difference in performance within a section based on the location: WP vs. 

BWP. Mechanical evaluation of the cores as well as testing of the extracted binder is used as 

criteria for establishing the variation in performance between BWP and WP cores.  

The results showed in Figure 4-2 clearly demonstrate that the consistency in the performance of 

the core is independent of the wheel path. The comparison is conducted at the core mixture level 

through comparing the core cracking potential using the IDEAL test, and at the binder level 
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through capturing the continuous intermediate grade of the extracted binders (Temperature at 

which the G*.sinδ is 5000 kPa). Figure 4-2 shows a comparison of the test results for both groups 

of cores.    

 

Figure 4-2 Correlation between BWP and WP samples in mixture and binder tests 

As shown in Figure 4-2 the IDEAL CT and binder testing agree that the WP and BWP cores are 

the same. The slope of the fit line is very close to equality (1.0) at a high coefficient of correlation 

(R2). Therefore, the core location will not be included in the analysis as a separate variable.  

4.3 Effects of Mix Properties on Performance 

This section intends to show the individual correlations between the mix properties and the studied 

distresses. As-produced properties such as Va (%) and VMA (%), as-constructed properties 

including placement density (%Gmm) and Thickness, cores mechanical testing, extracted binder 

testing, and extracted aggregate gradation are all evaluated. The correlations are evaluated based 

on their strength (R2) and trend. It is important to note that the pavements studied in this research 

have different ages. The correlations presented here are for deterioration rates rather than 

accumulated distresses. This way, the comparison between different projects is adequate and 

independent of age. However, for comparing core mechanical testing and extracted binder 

performance, the correlations rely on the accumulated deterioration. This is because the 

comparison is now between variables of the same age.  

It is important to note that the correlations presented in this chapter investigate a singular 

association between performance and a given variable. It is understandable that the performance 
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is dependent on a group of variables rather than a single variable. Therefore, a multivariate analysis 

is included in chapter 5.   

4.3.1 Pavement Thickness 
The thickness information evaluated in this section is the surface layer thickness. The correlation 

of the thickness against the on-site measured distresses is shown in Figure 4-3. 

 

 
Figure 4-3 Correlation between asphalt thickness and four studied performance indicators 

The results show no association between the surface layer thickness as measured from the cores 

and any of the distresses.  
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4.3.2 Asphalt Content 

Figure 4-4 Correlation between asphalt content and four studied performance indicators 

The data are showing that there is no direct association between the AC% of the surface layer with 

the distresses observed. This is an interesting observation, as the AC% is believed to directly 

correlate to performance. It is important to note that AC% refers to the content measured from the 

extracted cores.  
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4.3.3 Placement Density (%Gmm) 

 
Figure 4-5 Correlation between placement density and four studied performance indicators 

The trends shown above, suggests that there is a positive correlation between the placement density 

with transverse correlation. As the average density of the 500 ft sections increases, the recorded 

transverse cracking rate increases. This could be due to thermal diffusion and specific heat capacity 

differences between air and mixture. However, further study on this issue is necessary before any 

postulations can be made.  
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4.3.4 Production Va (%) 

 
Figure 4-6 Correlation between Va and four studied performance indicators 

The correlations show that the higher the average Va the lower the alligator cracking rate of 

deterioration. On the other hand, the higher the Va, the higher the rate of transverse cracking. This 

could be speculated that when mixes during production are harder to compact, they have higher 

mechanical stability, thus higher resistance to load related alligator cracking. But for the transverse 

cracking, it is more difficult to speculate a physical reason for this correlation.  
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4.3.5 Production VMA (%) 

Figure 4-7 Correlation between VMA and four studied performance indicators 

There is a strong correlation between longitudinal cracking rate and VMA. However, this 

correlation is based on 5 data points, with three of the data points clustered together. Therefore, 

this correlation is based on three unique values for VMA. It is difficult to reach a conclusion using 

such a low number of data points, especially knowing that it is believed in the field that higher 

VMA corresponds to higher mechanical stability. With respect to the transverse cracking rate, 

there is a positive correlation between the VMA and the rate. This correlation mirrors that of 

transverse cracking and Va.    
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4.3.6 Dust/Binder Ratio 

Figure 4-8 Correlation between dust/binder ratio and four studied performance indicators 

The results show some weak correlation between D/B and transverse cracking and rutting. For 

transverse cracking, the relationship could be influenced by the stiffening effect of the fines on the 

binder. For rutting, the higher D/B could be correlated with a higher rate by extending the binder. 

This stipulation requires further in-depth analysis of the nature of the filler within the mix along 

with its physicochemical properties. Such an analysis is beyond the scope of this project.  
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4.3.7 Aggregate Uniformity Coefficient - Cu 

Figure 4-9 Correlation between Cu and four studied performance indicators 

There appears to be a negative correlation between the aggregate gradation uniformity coefficient 

(Cu) and longitudinal cracking.  A higher Cu indicates a well-graded aggregate gradation, which 

leads to better packing. The results suggest that such packing is beneficial for longitudinal 

cracking.  
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4.3.8 Aggregate Coefficient of Curvature - Cc 

 
Figure 4-10 Correlation between Cc and four studied performance indicators 

The plots are showing a positive correlation between the coefficient of curvature (Cc) and rutting 

rate, and a negative correlation with longitudinal rate. Yet the scatter shown for these plots 

indicates the dependency of the performance of the Cc is not reliable.  

4.4 Correlation of Core Binder and Mixture Testing with In-Service Performance 

4.4.1  Mixture Testing 
This section investigates the correlations of the conducted mixture testing on field samples with 

the on-site performance measurements. 
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 Rutting 

Figure 4-11 IDT dynamic test correlation with rutting 

There is a negative correlation between the accumulated rutting and the E*@25C and 0.1 and 0.5 

Hz. This is a logical trend. Because at a lower frequency of testing the higher modulus correlates 

with lower permanent deformation. Higher E* at lower frequency indicates higher mix mechanical 

stability. 

 Alligator Cracking 

Figure 4-12 IDT dynamic test correlation with alligator cracking 

The correlation between the E* at a higher frequency and the alligator cracking shown in the above 

figure is unclear. However, the correlation using the IDEAL test, as shown below, is apparent and 

logical.  
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Figure 4-13 IDEAL test correlation with alligator cracking 

The figure shows that the higher cracking index, alligator cracking is reduced. On the other hand, 

peak load for mixtures correlates at a stronger level with in-service cracking. A higher peak load 

indicates a higher level of alligator cracking. This is an indication that for increased stiffness in 

mixes, cracking potential increases.  

  Longitudinal Cracking 

 
Figure 4-14 IDT dynamic test correlation with longitudinal cracking 

The longitudinal cracking is negatively correlated with E* at 10Hz at a relatively high correlation 

coefficient. The trend is opposite to that observed at a  lower frequency level of 1 Hz. This is 

logical and follows fundamental rheological principals for stress-controlled fatigue failure. 

However, the number of data points available for this correlation is low to trust the universality of 

this correlation.  
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Figure 4-15 IDEAL test correlation with longitudinal cracking 

For the IDEAL test, the higher CT index is positively correlated (at low R2) with higher 

longitudinal cracking. On the other hand, higher core stiffness is correlated with lower longitudinal 

cracking. This is logical for this type of distress and follows the expected trend for strain-controlled 

failure in viscoelastic materials. 

 Transverse Cracking 

Figure 4-16 Mixture testing correlation with transverse cracking 

Field cores testing using the SCB set up at -18⁰C show no correlation with transverse cracking. 

This could be due to the different mechanisms of failure between the pavements and SCB samples. 
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This could also be due to the inability of the SCB alone to characterize the pavement low-

temperature performance where the interaction of the SCB parameters and other mix parameters 

need to be considered. This possibility is examined in Chapter 5 of this report.  

4.4.2  Extracted Binder Testing 
This section investigates the correlations of the conducted binder testing on the extracted binders 

from the field samples with the on-site performance measurements.  

 Alligator Cracking 

Figure 4-17 Correlations between alligator cracking and binder properties 

Alligator cracking is only correlated with the continuous binder intermediate grade. This is the 

temperature at which the extracted binder complex modulus (G*) reached 5000 kPa. The trend of 

the correlation is logical and follows the expected trend. This trend also aligns with the mixtures 

where higher stiffness is correlated with higher fatigue cracking damage.  
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  Longitudinal Cracking 

 
Figure 4-18 Correlations between longitudinal cracking and binder properties 

The trend of the correlation between the binder continuous intermediate grade and the longitudinal 

cracking matches that of the core mixture testing. The higher the stiffness of the binder the lower 

the cracking. While the correlation between the ΔTc and cracking is strong, it is based on only a 

few data points. Therefore, it is difficult to make a statement at this stage. It is important to note 

that this trend is similar to that observed for mixtures, where higher stiffness correlated with lower 

longitudinal cracking damage. 

  Transverse Cracking 

 

 
Figure 4-19 Correlations between transverse cracking and binder properties 
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Transverse cracking does not show a significant correlation using binder testing. The multivariate 

analysis included in the next chapter will investigate the dependency of this distress and other 

distresses to a combination of factors.  

4.5 Correlation of Traffic Loading with Performance 

The effects of the cumulative traffic load on the performance are provided in this section. The X-

axis of the graphs are the cumulative passing traffic loads on the pavement during the life of the 

pavement.  

Figure 4-20 Effects of traffic load on four studied distresses 

The correlations between the cumulative traffic and the distresses are not very clear given the 

distribution of the scatters. The correlation between traffic load and rutting is the only trend that is 

showing to be consistent and logical. Yet, the number of rutting occurrences is too few to establish 



85 
 

4.6 Correlation of Climate with Performance 

4.6.1 Rutting 

 
Figure 4-21 Effects of climate on rutting 

4.6.2 Alligator Cracking 

 
Figure 4-22 Effects of climate on alligator cracking 

4.6.3 Longitudinal Cracking 
No logical correlations were found.  

4.6.4 Transverse Cracking 

 



86 
 

 
Figure 4-23 Effects of climate on transverse cracking 

Summary of the effects of climate variables on performance measurements: 

- There is some correlation between the number of days above 32.3ᵒ C and rutting.  

- Alligator cracking is highly correlated with the precipitation related indicators.  

- No logical direct correlations between longitudinal cracking and climate indicators.  

- Weak logical correlations between cold weather indicators and transverse distress.  

4.7 Comparison between IDEAL and SCB Tests 

In this section, a comparison between measured IDEAL results against SCB results at 25⁰C is 

conducted. Because the WP and BWP groups for cores were combined, the additional cores were 

used to test the cores for IDEAL and SCB. The comparison plots shown below include the overall 

indices and peak loads.  

 
Figure 4-24 Comparison between IDEAL and SCB tests 

The comparison presented above shows a very strong correlation between the IDEAL test results 

and the SCB. This means that both tests characterize the mixes similarly. They can be used 

interchangeably. Given the ease of use and simpler sample fabrication, the IDEAL appears to be a 

more suitable candidate for adopting.  
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4.8 Summary 

• The distress survey revealed that transverse cracking has the highest severity and

abundance. It was also observed that the rutting has the least deterioration index values

compared to the other types of distresses.

• The results of the mixture and binder testing showed that there is no meaningful difference

between the WP and BWP samples.

• No direct correlations between the asphalt layer thicknesses and AC with the performance

were observed.

• Increasing the in-place density is associated with higher transverse cracking.

• The higher Va is associated with the lower alligator cracking and higher transverse

cracking.

• The higher VMA is associated with higher longitudinal and transverse cracking.

• Some weak correlations were observed for high D/B ratio to the higher transverse and

rutting, but this needs to be further studied.

• Aggregate uniformity coefficient, Cu, is correlated with the longitudinal cracking. The

better the aggregate gradation packing the lower the longitudinal cracking.

• The coefficient of curvature, Cc, is correlated with the rutting and longitudinal rate.

Although the data are highly scattered around the trend line. The increase in Cc value is

around with the higher rutting and a lower longitudinal rate.

• The IDT dynamic test showed that lower rutting DI is correlated with a higher E* at the

rates of 0.1 and 0.5.

• The IDEAL test results showed meaningful correlations with the alligator cracking. The

lower CT index and higher peak load are associated with the higher alligator cracking. The

opposite trend is observed for longitudinal cracking, whereas the high peak load and lower

CT index is associated with a lower longitudinal cracking problem.

• The SCB low-temperature test results were observed to be not correlated with the measured

transverse cracking.

• Alligator cracking is correlated with the continuous binder intermediate grade. The higher

the grade the higher alligator cracking DI was observed.
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• Unlike alligator cracking, the higher continuous intermediate grade of the binder is 

correlated with a lower longitudinal cracking DI problem. 

• The climate data revealed that there is some correlation between the number of days above 

32.3ᵒ C and rutting and between alligator cracking and precipitation related indicators. 

However, there were weak correlations between cold weather indicators with the transverse 

cracking and no correlations between longitudinal cracking and climate indicators. 

• There is a very strong correlation between SCB and IDEAL test results. Due to the 

simplicity of the coefficient IDEAL test, it can be a better substitute for the SCB test in the 

field.  
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5. Connecting Mix-Design Parameters to In-Service Performance

This regression analysis was conducted to evaluate in-place factors that may be influencing the 

performance of the sections under study. These factors include core properties, extracted binder 

properties, core aggregate properties, traffic experienced by the pavement sections, or climate 

during the in-service life. Therefore, the regression models provide the connection between mix 

design and laboratory testing with in-service performance. these models are expected to serve the 

DOT in its efforts towards developing performance engineered mix design.  

The models cover Alligator, Rutting and Transverse Distresses only. Longitudinal cracking was 

not included due to the small number of sections reporting this distress (5 sections only). It is 

important to note that transverse cracking is reported in all pavement sections. This analysis was 

conducted such that the least number of variables can be included in the model given, provided 

that they are statistically significant, and follow the laws of physics. The developed models provide 

guidelines for future mix-designs to be engineered for targeted performance levels with respect to 

the studied distresses.  

In pursuing the iterative process of determining the best model, the analysis was conducted without 

allowing to fit an intercept in the regression model. This is because of the fact that in multivariate 

fitting, the intercept can act as a balancing measure to achieve higher R2. The regression fitting 

was conducted using mixed (backward and forward) fitting with a cutoff p-value of 0.1 for all the 

independent variables. Then engineering experience was used to select the appropriate variable 

from the physical point of view. This is in addition to limiting the number of variables to four for 

alligator cracking and rutting due to the small number of sections exhibiting these distresses (under 

12), while the variable used for transverse cracking modeling was increased to 5 since all sections 

experienced transverse cracking.   

5.1 Alligator 

For this distress, the regression analysis reveals that it is highly correlated to the continuous 

intermediate grade of the extracted binder, the age of the pavement, and the core cracking index 

measured used the IDEAL test. The regression results are shown in the following table.  
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Table 5-1 Results of the alligator cracking regression multivariate analysis 

Term Estimate Std Error t Ratio Prob>|t| 
Continuous Intermediate Grade 0.945 0.180 5.26 0.0005 
Age 3.353 0.361 9.28 <.0001 
CTindex -0.010 0.004 -2.75 0.0226 

 

The table shows the significance of the three-independent variable. To validate the model, it is 

important to assure there is no bias in the model. This is done by comparing the order against the 

residual of the fit. Figure 5-1 shows that the scatter has a random distribution and not any apparent 

bias. The following plot shows the data order against the residual.  

 
Figure 5-1 Data point order against residual of the fit for alligator cracking model 

Comparing the predicted value of the alligator cracking deterioration index against the field 

measured for the test sections is shown in the following plot. This comparison tests the strength of 

the fit.  
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Figure 5-2 Comparison of measured alligator cracking deterioration index against predicted values 

As seen in the plot, the regression model produces values that are in strong agreement with the 

measured values. Examining, the regression parameters, the coefficients of the independent 

variables follow expected trends. An increase in the intermediate true grade is associated with a 

higher level of alligator cracking. As the age of pavement increases, the damage level also 

increases. And as the cracking index from the IDEAL test increases, the mix exhibits less distress. 

All these trends meet the logical trends of these properties and the observed trends in chapter 4.  

This model illustrates how the mix design process can be optimized for the service life of a mix. 

It is dependent on the binder used in the mix and the overall mixture laboratory performance test.  

5.2 Rutting 

The same analysis is conducted on the rutting distressed sections. The model yielded dependency 

on job mix formula (JMF) property, structural design, and core volumetric and mechanical 

properties. The coefficients for these parameters are meeting expected engineering trends at 

statistically significant levels. The increase of dust to binder ratio is correlated with a decreased 

rutting. An increase in the ratio of the surface thickness to the overall thickness is associated with 

increased rutting. The increase in mix density under traffic is associated with increased rutting. 

Finally, a higher dynamic modulus at low frequency is associated with decreased rutting.  
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Table 5-2 Results of the rutting regression multivariate analysis 

Term Estimate Std Error t Ratio Prob>|t| 
Dust/Binder Ratio -31.516 4.062 -7.76 <.0001 
Surface Lift/Overall Thickness 40.162 11.223 3.58 0.0059 
Core Bulk Density 15.889 2.942 5.40 0.0004 
E*@0.5Hz -0.006 0.001 -4.19 0.0023 

Figure 5-3 Data point order against residual of the fit for rutting model 

The scatter of the residual plot confirms the unbiased nature of the model. It is important to note 

that the range of rutting values included in the analysis is on the low side. This is because the 

investigated pavements did not show significant rutting damage. Yet,  as shown below, the 

correlation between the measured and predicted values show the ability to achieve a good level of 

agreement. It is important to note that the slope of the fit line is close to 1.0.  Another note, the 

experimental plan did not include a dedicated laboratory test for rutting and it relied on the complex 

modulus as a means of evaluating the mechanical response of the mixes. Therefore, in adopting 

this analysis for performance engineered mix design, it is suggested to focus on including a rutting 

test that can simulate in-service performance.  
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Figure 5-4 Comparison of measured rutting deterioration index against predicted values 

5.3 Transverse Cracking  

This distress is observed in all sections investigated. The result of the multivariate analysis shows 

that the extent of this distress is dependent on material and climate as shown in Table 5-3.  

Table 5-3 Results of the transverse cracking regression multivariate analysis 

Term Estimate Std Error t Ratio Prob>|t| 

Exp(m-value) -173.17 40.65 -4.26 0.0006 

SCB Stiffness/ΔTc 0.57 0.28 1.99 0.0636 

Dust/Binder Ratio 59.91 26.73 2.24 0.0395 

Log(Total Snowfall (mm)) 19.57 4.19 4.67 0.0003 

Surface Lift/overall thickness 151.02 62.72 2.41 0.0285 

As seen in Table 5-3, the factors included in the model are highly significant given the low p-

values. In addition, the dependency of the transverse cracking on these factors is logical. The model 

shows a balanced dependency of the transverse cracking on binder properties, mixture properties, 

mix design parameters, pavement structure, and climate. For the binder, the higher the m-value 

from the BBR (higher relaxation) the lower the transverse cracking. In fact, the m-value is the 
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most significant parameter in the model as shown by the lowest p-value. Another binder property 

that has significant influence is ΔTc. However, the influence of this parameter is in the form of 

interaction with the mixture stiffness as measured by the SCB. The regression model shows that 

for a given mixture stiffness level, the higher the binder ΔTc value the less prone the pavement to 

transverse cracking. This is critical as it provides a transfer function between laboratory 

mechanical testing and in-service performance.  In addition, the model shows that the dust to 

binder ratio has a significantly detrimental effect on cracking along with the ratio between the 

surface lift thickness and the overall thickness of the pavement. The residual plot shown in Figure 

5-5 demonstrates the unbias of the trends in the model.  

 
Figure 5-5 Data point order against residual of the fit for the transverse cracking model 
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Figure 5-6 Comparison of measured transverse cracking deterioration index against predicted 

values 

The comparison shown in Figure 5-6 illustrates the ability of the model to fit the wide range of 

distress deterioration index values observed in the field sections. The R2 value for the fit is 

acceptable. While most of the DI values are clustered in the middle of the range, the model can 

capture the values on both ends of the range with relative accuracy.  

5.4  Summary 

The multivariate analysis summarized above is prepared to provide a link between laboratory 

measurable properties and in-service performance for specific distresses. These measurable 

properties include mix design properties, binder performance testing, and mixture performance 

testing. Linking the in-service performance to these parameters can provide the Wisconsin DOT 

the foundation for pursuing performance engineered paving (mix design, construction, and 

pavement management). It is highly recommended that the DOT continues to conduct similar 

efforts to expand the data used in the analysis.  

It is important to note that the models above did not incorporate production as a variable. The 

intention of these models is to help relate mix design, expected traffic, and climate to targeted 

distresses. They serve as the basis for developing performance engineering mix designs for future 

roadways. However, from a deterioration prediction point of view, the limited data generated for 

this study is not enough to conduct a comprehensive statistical model. Therefore, the data from 
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this research is combined with data from previous Wisconsin Highway Research Program 

(WHRP) research to achieve the goal of developing performance deterioration models for the 

Wisconsin network. The next chapter documents this effort.  
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6. In-Service Performance Deterioration Modeling

For the pavement management point of view, it is important to simulate in-service deterioration 

over the lifetime of the pavement. Having deterioration models that can incorporate the unique 

properties of each pavement section such as structure design, loading, environmental condition, 

and most importantly quality of construction and production as the inputs of the model is 

important. This approach would serve to continuously improve quality programs for state 

transportation highway agencies and provide the essential foundation for building performance-

based mix design and improve quality control programs for pavements (Bozorgzad et al. 2018). 

This approach is able to predict the behavior of the pavement at the desired stage. The objective 

of this chapter is to construct a framework of deterioration modeling of in-service performance 

effectively. This framework is constructed using georeferenced relational database architecture.  

Data entries used in this chapter include those collected for this project combined with data 

collected in WHRP project 0092-15-05. This means that that the database is made of 42 paving 

projects comprising about 240 miles of Wisconsin network. The pavement sections included in 

this chapter’s modeling include those with thickness greater than 2 inches due to the varying 

sensitivity of pavements thinner than 2 inches to the input parameters.   

6.1 Construction of Machine Learning Models 

Based on the background discussed earlier, the as-constructed and as-produced information, as 

well as the field data gathered for evaluation of pavement deterioration, were utilized to develop 

learning algorithms. Indeed, learning models were employed to forecast the total deterioration of 

a pavement layer, TDI, using relevant predictor variables comprised of the influencing factors on 

pavement performance. These algorithms were developed based on parameters such as pavement 

age, lot mix production air void (Va), lot mix production voids in mineral aggregates (VMA), 

asphalt content (AC), placement density (%Gmm), asphalt thickness, and cumulative traffic from 

the construction time to the date of the survey in million EASLs. All these parameters are believed 

to impact the in-service performance of the pavements. The descriptive statistics of the input 

parameters as well as the dependent target for 240 pavement sections are listed in Table 6-1.  
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Table 6-1 Summary of descriptive statistics of the predictor and dependent variables 

Descriptive 
Statistics 

Predictor Variables Depended 
Target 

Age 
(year) 

Production 
Va (%) 

Production 
VMA (%) 

Placement 
Density 

(%Gmm) 

Thickness 
(in) 

Cumulative 
Traffic (million 

EASL) 

AC 
(%) Total DI 

Mean 5.75 4.39 14.64 93.39 4.09 9.65 5.44 32.61 
Median 6.00 4.12 14.61 93.15 4.26 9.40 5.38 30.33 
Standard 
Deviation 2.43 0.30 0.57 0.94 0.61 3.67 0.45 20.77 

Range 16.00 1.60 3.15 4.74 2.75 24.07 2.37 95.99 

The pavement deterioration index, DI, was defined as a function of predictor variables listed in 

Table 6-1. The general form of the predictive function is: 

𝑪𝑪𝑫𝑫𝑰𝑰 = 𝒇𝒇(𝑨𝑨𝑨𝑨𝑰𝑰,  𝑽𝑽𝑽𝑽,  𝑽𝑽𝑽𝑽𝑨𝑨,  %𝑮𝑮𝒎𝒎𝒎𝒎, 𝑰𝑰𝑰𝑰𝑰𝑰𝒍𝒍𝑽𝑽𝒄𝒄𝑰𝑰 𝑫𝑫𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫𝒕𝒕𝑫𝑫,  𝑪𝑪𝑻𝑻𝑫𝑫𝒄𝒄𝑻𝑻𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫,𝑪𝑪𝑻𝑻𝑽𝑽𝒇𝒇𝒇𝒇𝑫𝑫𝒄𝒄)  (Equation 6-1) 

Traditional regression techniques (e.g., least-squares linear model, logistic regression, multiple 

regression, Bayesian approach, etc.) have been widely used in pavement-related projects as 

documented in Galin (1981), Moossazadeh and Witczak (1981), Hong and Prozzi (2006), Park et 

al. (2008), Kaur and Pulugurta (2008), and Wang (2019). However, the methods mentioned above 

are less effective in solving complex problems such as the deterioration of flexible pavements. 

Data mining techniques have been gaining popularity as a powerful tool to overcome the 

drawbacks of traditional methods since the techniques are capable of yielding more reliable and 

satisfying results in complex nonlinear problems in pavement engineering (Nemati and Dave 2018; 

Ashtiani et al. 2018; Notani et al. 2019, Rogers et al. 2017). Even though the techniques are cost-

intensive in terms of computational efforts, data mining can reveal the hidden relationships 

between the input and output variables using methods such as clustering, resampling, recursion, 

visualization, generalization, and randomizations (Prasad et al. 2006, Majidifard et al. 2019). In 

this chapter, different learning algorithms are evaluated and compared using the collected database 

to develop more accurate and more reliable deterioration models. The machine learning methods 

assessed in this study are as follows: (1) Decision Tree Regression (DTR); (2) Random Forest 

(RF); and Gene-expression Programming (GEP). 
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6.2 Decision Tree Regression (DTR) 

Decision tree regressions (DTRs) are learning predictive models used for classification and 

regression. The preliminary form of the decision tree was constructed by Morgan and Sonquist 

(1963). A newer structure of the model, i.e., Classification and Regression Tree (CART), was 

developed in the mid-80s (Breiman et al.  1984 and Breiman et al. 1995).  Popular forms of 

decision trees, e.g., C4.5, C5, and ID3, can be found in Quinlan (2014). Based on the goal and the 

nature of the data, the tree structure can be developed for either classification or regression 

purposes. A DTR is comprised of three sub-structures: (1) root node is the beginning part of the 

tree—corresponding to the best solution—which is assigned to all the training dataset. This node 

is divided into new intermediate nodes using an iterative process called recursion. To avoid an 

over-fitting prediction from the constructed decision tree after the recursion step, a pruning phase 

is applied that attempts to remove the highly specific sub-trees. (2) Intermediate nodes that connect 

the leaf and root nodes using mathematical equations; and (3) the leaf nodes (end nodes) that 

provide a numerical prediction. DTR is, indeed, a top-down approach which means the analysis is 

implemented from the root node progressing down to the end nodes (Apté and Weiss, 1997). 

For this study, the structure of the DTR was constructed using a coded subroutine in Python®. The 

minimum number of test samples to split an internal node was optimized to be 6, while the 

minimum number of test samples placed at each leaf was taken to be 4. Mean Square Error (MSE) 

was deployed as the fitness criterion for developing the trees. MSE is determined as: 

𝑽𝑽𝑴𝑴𝑴𝑴 =   ∑ (𝑰𝑰𝑫𝑫−𝑫𝑫𝑫𝑫)𝟔𝟔

𝑰𝑰
𝑰𝑰
𝑫𝑫=𝟏𝟏                                                                                                     (Equation 6-2) 

Where xi is the measured field deterioration index (DI), yi is the predicted pavement deterioration 

index, and n is the number of collected samples. To predict the pavement deterioration index, a 

dataset including 240 fields measured test samples were used. It is worth to mention that the dataset 

was constructed based on not only the 12 projects in this study but also 30 more projects that were 

studied by the authors of this report in a previous study for WisDOT (Faheem et al. 2019). The 

data was then randomly split into training and testing subsets. 80% of the data, i.e., 190 test 

samples, was assigned to the training subset. Then the remained 20% of the data, i.e., 50 test 

samples, was kept out for testing the constructed DTR model. Figure 6-1 compares the measured 

field pavement deterioration index with the decision tree-predicted model for both training and 
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testing subsets. It is observed that the DTR is potentially successful in terms of yielding promising 

results as judged by the coefficient of determination, R2, and root mean squared error, RMSE, for 

the training and testing datasets (Figures 6-1a and 6-1b).  

Figure 6-1 Decision tree-predicted model vs. measured field pavement deterioration: (a) training 
dataset and (b) testing dataset 

6.3 Random Forest (RF) 

Random Forest (RF) is an ensemble regression technique (Breiman, 2001). RF has been used in 

different studies, and in a few of them, prediction of pavement deterioration has been studied (e.g., 

Lee et al. 2015; Gopalakrishnan et al. 2017; Sharma et al. 2018, Ghasemi et al. 2019). RF is a 

specialized form of regression trees including organized constraints and boundary conditions 

applied sequentially in a top-down approach to the root and leaf nodes of the constructed trees. A 

randomly selected training subset is used for each tree during the construction of RF. The training 

subsets are then replaced as many times as the number of trees made in the ensemble.  It should 

be pointed out that the bootstrap aggregation is typically used in the constructed trees. Bootstrap 

is a sampling process which means some of the constructed samples are replaced by the scenarios 

from the training subset, and some will be kept out (Svetnik et al. 2003). 

Evaluation of the machine learning models is usually done using a large number of samples (being 

actual data or synthetic ones) that basically verify and test the trained algorithm. Due to the nature 

of field data in which its collection is cost-intensive in terms of time, energy, and money, a limited 

number of collected samples can be assigned for verifying the constructed RF model. Thus, 

different cross-validation techniques (e.g., out-of-bag, K-fold cross-validation, etc.) can be 
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deployed along the training process to provide better and more reliable anticipation (Svetnik et al. 

2003). In this study, the out-of-bag (OOB) sample was selected for the purpose of cross-validation. 

Similar to the DTR algorithm, the constructed random forest was developed using a training subset 

including 80% of the collected field data. 20% of the data was left out to verify and test the model. 

A coded subroutine in Python® was utilized for constructing the model architecture. The RF 

features were optimized to yield the best prediction as follows: No. of trees in the forest = 240, 

minimum No. of samples required to split an internal node = 5, the minimum number of samples 

required to be at a leaf node = 3. Figure 6-2 shows the comparison of the random forest-predicted 

model and the measured DI, for both training and testing datasets. The RF model can predict 

pavement deterioration relatively accurate as assessed by the high coefficient of determination, R2 

= 0.68, and low root mean squared error, RMSE = 10.17 

Figure 6-2 Random forest-predicted model vs. measured field pavement deterioration: (a) training 
dataset and (b) testing dataset 

6.4 Gene-Expression Programming (GEP) 

Even though, the machine learning techniques including DTR and RF are robust tools for the 

prediction of pavement deterioration, the product of these models may not be an easy-to-use 

function since the methods are incapable of developing the predictive models in the form of 

mathematical equations. Thus, genetic programming (GP) can be deployed to overcome the 

drawbacks of such methods. In this study, gene-expression programming—an evolutionary 

learning algorithm—is used to provide the total deterioration of pavements regarding the 

mathematical equation. 
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Genetic programming (GP) is an evolutionary computation (EC) technique that can solve complex 

problems in a dynamic environment using an iterative optimized process to generate the best 

predictive model (Poli et al. 2008). Gene expression programming was first adopted to produce a 

practical solution for prediction models by Ferreira (2001). GEP is the specialized form of genetic 

programming (GP) which can be referred to as a type of genetic algorithm since it is essentially 

composed of a population of mathematical solutions that ultimately evolves the selection of the 

best solution using an optimization process. In fact, the tree structures in the genetic algorithm are 

computer programs (Koza 1990). In GEP, the structural ordering of the tree comprises several 

functions and terminals. An optimization process can determine the final function of the tree. The 

optimization process is conducted using the fitness function with the training data. Indeed, if the 

fitness criterion is not satisfied, new generations of expression trees would be regenerated. The 

regeneration is on the basis of different processes including replication, mutation, transposition 

and insertion, recombination, and so on (Ferreia, 2001). In this study, the root mean squared error 

(RMSE), was used as the fitness function.  

Generally, the function (f) includes the primary arithmetic operations, i.e., +, -, ×, /, etc; Boolean 

logic functions, i.e., AND, OR, NOT, etc; or other mathematic functions. The terminal set T 

contains the arguments for the functions and can consist of numerical constants, logical constants, 

variables, etc. The functions and terminals are initially chosen at random to construct a tree-like 

structure with root points with ending in a terminal node (Gandomi and Alavi 2012). An example 

of an expression tree is demonstrated in Figure 6-3. In this example, the terminal node symbolizes 

independent variables or constant values. The mathematical form of the expression tree is as: 

𝑰𝑰�
𝑿𝑿𝟏𝟏
𝑪𝑪𝟏𝟏

. �𝑿𝑿𝟔𝟔
𝟑𝟑 �    (Equation 6-3) 

Figure 6-3 Example of an algebraic equation with an expression tree 
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Where x1 and x2 are independent variables and c1 is the constant value. To predict DI using the 

GEP model, the collected database including 240 measured field samples was utilized. As the first 

step, the database was randomly split into the training and testing datasets. For this purpose, 80% 

of the database (190 cases) was assigned to the training subset and the rest (50 samples) to the 

testing set. The GEP structure was built using twenty-five chromosomes with three genes and the 

head size of ten. It is noteworthy to mention that the optimized model can be profoundly influenced 

by the selection of the parameters mentioned above. The size and number of GEP structure 

parameters were thus optimized through an iterative process. 

To develop the best predictive model, the fitness function was selected as RMSE. The following 

equation was developed as the best predictive function for pavement deterioration index: 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 = 𝑪𝑪𝟏𝟏𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 + 𝟏𝟏
𝑪𝑪𝑻𝑻𝑫𝑫𝒄𝒄𝑻𝑻𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫

× �𝑪𝑪𝟔𝟔𝑨𝑨𝑪𝑪 + 𝑪𝑪𝟑𝟑𝑰𝑰𝒍𝒍𝑽𝑽𝒄𝒄𝑰𝑰𝑰𝑰𝑫𝑫𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫𝒕𝒕𝑫𝑫 + 𝑪𝑪𝟒𝟒𝑨𝑨𝑨𝑨𝑰𝑰 + 𝑪𝑪𝟕𝟕
𝑽𝑽𝑽𝑽𝑨𝑨
𝑽𝑽𝑨𝑨

+

𝑪𝑪𝟑𝟑𝑪𝑪𝑪𝑪𝑫𝑫(𝑪𝑪𝟏𝟏𝟔𝟔𝑽𝑽𝑽𝑽𝑨𝑨) − 𝑪𝑪𝟔𝟔 − 𝑪𝑪𝟕𝟕𝑽𝑽𝑽𝑽𝑨𝑨𝑴𝑴𝑫𝑫𝑰𝑰�𝑪𝑪𝟏𝟏𝟏𝟏𝑨𝑨𝑨𝑨𝑰𝑰� −

𝑪𝑪𝟕𝟕𝑽𝑽𝑽𝑽𝑨𝑨𝑪𝑪𝑪𝑪𝑫𝑫�𝑪𝑪𝟏𝟏𝟔𝟔𝑽𝑽𝑽𝑽𝑨𝑨𝟔𝟔𝑫𝑫𝑫𝑫𝑰𝑰(𝑪𝑪𝟏𝟏𝟒𝟒𝑰𝑰𝒍𝒍𝑽𝑽𝒄𝒄𝑰𝑰𝑰𝑰𝑫𝑫𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫𝒕𝒕𝑫𝑫)� − 𝑪𝑪𝟑𝟑𝑴𝑴𝑫𝑫𝑰𝑰(𝑪𝑪𝟏𝟏𝟔𝟔𝑰𝑰𝒍𝒍𝑽𝑽𝒄𝒄𝑰𝑰𝑰𝑰𝑫𝑫𝑰𝑰𝑰𝑰𝑫𝑫𝑫𝑫𝒕𝒕𝑫𝑫)� + 𝑪𝑪𝟏𝟏𝟑𝟑 ×

𝑪𝑪𝑻𝑻𝑽𝑽𝒇𝒇𝒇𝒇𝑫𝑫𝒄𝒄𝟔𝟔

𝑨𝑨𝑪𝑪×𝑽𝑽𝑽𝑽𝑨𝑨
+ 𝑪𝑪𝟖𝟖𝐒𝐒𝐓𝐓𝐓𝐓(𝑨𝑨𝑪𝑪 × 𝑽𝑽𝑽𝑽𝑨𝑨) + 𝑪𝑪𝟏𝟏𝟑𝟑𝑪𝑪𝑻𝑻𝑽𝑽𝒇𝒇𝒇𝒇𝑫𝑫𝒄𝒄 − 𝑪𝑪𝟗𝟗𝐀𝐀𝐀𝐀 × 𝑽𝑽𝐌𝐌𝐀𝐀                    (Equation 6-4) 

Where Ci are the constants; C1 = 1.53, C2 = 1.74, C3 = 35.19, C4 = 19.24, C5 = 31.86, C6 = 3417.65, 

C7 =3.96, C8 =0.18, C9 =0.05, C10 =15273, C11 =2.99, C12 =297.20, C13=0.02, C14=-1052.06 

Figure 6-4a compares the predicted DI determined by the GEP-developed Equation 6-4 with the 

corresponding field data. A promising estimate of the pavement deterioration can be governed by 

the GEP model with an R2 of 0.63 and root mean squared error (RMSE) of 13.28. Figure 6-4b 

demonstrates the comparison of the GEP and measured field data using the testing dataset; the 

results show an acceptable correlation with R2 of 0.59 and RMSE of 13.70. To reach the best model, 

about 1.8x106 populations of individuals were generated indicating that a computationally cost-

intensive process is required to acquire the best predictive function. 
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Figure 6-4 Comparison of GEP-predicted model and FE model for the pavement deterioration 

index (a) training dataset and (b) testing dataset  

6.5 Transfer Function between PCI and DI 

The performance models in this study are developed based on the total DI rather than the PCI 

values. This decision was made by the authors due to the fact that; a) the mechanisms, occurrence 

and mechanical dependency of these four distresses to the asphalt mixture properties are massively 

investigated and proven in the literature; b) the authors confirmed these four distresses by 

independent field performance surveys; c) the DI allows investigating the effects of quality of 

construction and production on the performance for each distress. Due to the importance of the 

PCI, the correlation between PCI and DI is also investigated in this study by a transfer function. 

The developed transfer function can bridge PCI to DI. The Function was developed based on 

Genetic Programming (GP). The correlation of the PCI to DI is: 

𝑰𝑰𝑪𝑪𝑰𝑰 = 𝟗𝟗𝟗𝟗 + 𝟔𝟔.𝟔𝟔𝟕𝟕𝟗𝟗
𝑪𝑪𝑫𝑫𝑰𝑰−𝟒𝟒.𝟏𝟏𝟔𝟔

− 𝑫𝑫𝑫𝑫𝑰𝑰(𝟔𝟔.𝟔𝟔𝟖𝟖𝟗𝟗𝑪𝑪𝑫𝑫𝑰𝑰) − 𝑫𝑫𝑫𝑫𝑰𝑰(𝟕𝟕.𝟖𝟖𝟑𝟑 − 𝟒𝟒𝟕𝟕𝟕𝟕𝑪𝑪𝑫𝑫𝑰𝑰) −

𝟔𝟔.𝟔𝟔𝟕𝟕𝟕𝟕𝑪𝑪𝑫𝑫𝑰𝑰 − 𝟖𝟖.𝟕𝟕𝟑𝟑𝑫𝑫𝑫𝑫𝑰𝑰(𝟔𝟔.𝟔𝟔𝟗𝟗𝟖𝟖𝑪𝑪𝑫𝑫𝑰𝑰)  
(Equation 6-5) 

  

Figure 6-5 shows the predicted PCI values by using the GEP method against the actual 

measurements reported in the PIF. As the graph shows, the correlation is often more accurate when 

the PCI is in a higher range or better serviceability condition.  
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Figure 6-5 Measured PCI vs. predicted PCI 

Figure 6-6 shows the validation set of data for GP predicted values against the actual field 

measurement. This graph provides a more detailed validation of the data points used in this study 

against the predicted PCI for all studied SNs. As it can be noticed, the higher accuracy achieved 

for, higher PCI values. The lower PCI values often represent pavements in a point that are suffering 

from a variety of different distresses, and not just limited to the four studied here. These pavements 

are potentially susceptible to other forms of deterioration such as potholes, weathering, etc., which 

decrease PCI to lower values, while the performance models are overlooking those distresses.  

 
Figure 6-6 Validation of the developed transfer function 
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6.6 Summary 

• With the help of artificial intelligence, a series of machine-learned models were developed. 

These models are based on the collected database in this project as well as the WHRP 

project 0092-15-05. 

• The developed models are based on the 42 highway projects, and 240 SNs within the 

WisDOT highway networks. The total length of the database exceeds 240 miles. 

• Input parameters used in these models are including age, production Va, production VMA, 

placement density, asphalt layer thickness, cumulative traffic, and AC. The models 

target/output parameter is the summation of DI values of the four investigated distresses of 

rutting, alligator, longitudinal, and transverse cracking. 

• In these models, the dataset divided to 80% for training the model, and 20% for testing the 

accuracy of the developed models. 

• The predictions made by the decision tree regression model are compared to the field data. 

The comparison resulted in R2 of 0.83 for the training set, and 0.60 for the testing dataset. 

The RMSE values were 8.43, and 10.22 for the training and testing datasets, respectively. 

• The predictions made by the random forest model is compared to the field data. The 

comparison resulted in R2 of 0.73 for the training set, and 0.68 for the testing dataset. The 

RMSE values were 9.28, and 10.17 for the training and testing datasets, respectively. 

• Gene-expression programming is used to construct the deterioration model equation. To 

reach the best model, about 1.8x106  generations of the model were tried by using all the 

input parameters. 

• The Gene-expression programming model predictions were compared with the actual field 

measurements for both training and testing datasets. The R2 and RMSE values for the 

training dataset were 0.63 and 13.28, respectively. For the testing dataset, R2 and RMSE 

were 0.59 and 13.70, respectively. 

• Due to the fact that PCI value is widely used as an indicator of the overall performance of 

the pavement, a transfer function for converting the total DI value to PCI was constructed. 

• The transfer function between PCI and DI was developed by using a machine learning 

technique of genetic programming. 
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• Comparing the measured PCI values with the predicted ones, the R2 is calculated to be 

0.85, and RMSE is calculated to be 3.25. The model shows more accurate predictions in 

the higher PCI values. 
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7. Summary, Conclusion, and Recommendations 

7.1 Summary and Conclusions  

This study was conducted to help the Wisconsin DOT relate the in-service performance to 

measurable variables for improved performance in the future. The data collected is used to 

highlight the trends and generate models to assess the influence of material properties and loading 

(traffic and climate) factors on specific pavement distresses. Additional data is used to create 

generalized performance deterioration models. The presented models employed traditional 

multivariate analysis as well as machine learning methods.  

• This study highlighted that transverse and longitudinal cracking are the most frequent and 

have the highest severity level among all studied distresses. While transverse cracking is 

modeled in this study, longitudinal has proved to be difficult to model. This is because 

most of the longitudinal cracking reported in the Wisconsin database is related to joint 

cracking, not in-lane cracking. Thus two different mechanisms are involved in it, one is 

construction-related and the other is mechanical behavior. Since separating the in-lane and 

join cracks was not possible, it is suggested that a separate project be conducted to evaluate 

the influencing factors on this distress.  

• The data collected and analyzed in this research shows that the Wisconsin network is 

performing well in terms of rutting and alligator cracking. Other types of distresses are also 

present but at much reduced extent.  

• The discrepancy between the on-site distress survey and spider van distress survey, PIF 

database, is observed. The differences are in the extent of the observed distresses and 

severity level.  

• The multivariate analysis provided a statistically significant correlation between mix 

performance and in-service performance. This is critical in advancing performance-based 

specifications. 

• The deterioration model presented in this report presents pavement dependent modeling 

for improved pavement management practices. The input parameters are unique for each 

individual sequence number. Therefore, the model is implementable without major 

changes in the current state of practice within the state.  
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• Cracking (transverse and alligator) is dependent on asphalt binder properties. Rutting is 

less sensitive to asphalt binder properties.  

• Mix design is highly critical for rutting resistance and transverse cracking.  

• The asphalt content was found to be critical for transverse cracking only.  

• The deterioration model is dependent on structural design, and construction quality. It can 

be used for effective pavement management planning, and to conduct sensitivity analysis 

for determining quality specification limits.  

7.2 Recommendations 

The recommendations based on the findings of this study are: 

1- Implementing the multivariate models as the foundation for developing performance 

engineered mix design protocols for future pavement mixes.  

2- Implementing the proposed deterioration models for a performance-based pavement 

management protocol.  

3- Update the DOT data collection and storage technology to adopt a geo-relational pavement 

history system. This will create a database capable of updating the deterioration model 

continuously using available machine learning tools for higher accuracy. In addition, this 

database framework allows for developing deterioration models for different classes of 

pavements.  

4- Update pavement performance surveying schemes with respect to technology used and 

segmentation of the pavement network. This is critical since the deterioration models will 

always be as accurate as the pavement history data.  

5- Conduct a similar study on thin pavement lifts as they are a separate class. The analysis 

conducted for developing the deterioration models was forced to remove data pertaining to 

thick lifts as their performance significantly differs from thicker pavements.  

6- Calibrate pavement structural designs based on the deterioration modeling proposed in this 

report.  
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7.3 Comments Regarding Implementation 

This research combines laboratory testing with field evaluation and advanced data analytics. The 

nature of laboratory and fieldwork requires a significant level of effort and cost. The utilization of 

pavements history data collected at the different stages of their life cycle reduces such expenditure 

and increases the impact and significance of pavement research. It is understandable that 

historically, such data-driven research was not common. The current advances in computing, 

storing, and software technology have made this type of research as the new norm. Therefore, a 

given agency needs to go through the stages of adaptation to build the needed infrastructure for 

data-driven research complemented by lab or fieldwork. 

In pursuing this research, the research team employed different tasks and techniques to compile 

the needed relational database. This section is prepared as a recommendation guide for the future 

implementation of such research. This section would also help the DOT in upgrading the current 

data management protocols for ease of implementation. The following summarizes the 

recommended steps to create a better environment for conducting data-driven research: 

1- Divide the network into segments for monitoring performance. the current segmentation is 

about one mile long. This is too long of a segment, especially that only 1/10 of this segment 

is monitored as a sample. It is suggested that the segmentation be about ½ a mile long at 

most.  This will significantly minimize inconsistencies in performance data and allow for 

self-calibration of recorded performance trends for the same pavement. For example, some 

of the pavements tested in this study were designated as premature failure pavements. An 

investigation of the PIF database as well on-site evaluation revealed that none of these 

pavements are out of the norm in terms of rate of deterioration. Moreover, due to the length 

of the current segmentation, it is observed that a given segment contains multiple 

construction projects. This can cause confusion in interpreting the performance 

measurements. A higher resolution segmentation will allow higher confidence is such 

designation as comparisons with segments before and after a specific position provide a 

starting point in the full-scale evaluation of the entire paving project. The new 

segmentation system should be synced with future project assignments, where the 

production and construction related works could be easily linked with the performance 

surveys. 
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2- Use new technology in distress surveying such as imaging techniques. This allows for 

conducting faster performance surveys, within a shorter time period, and at a higher area 

of coverage if not the full area of the segment. Such that work can significantly improve 

the accuracy and resolution of the deterioration models in terms of the aging effects on 

performance. These techniques should be able to conduct and record spot performance 

measurements. The new surveying techniques should be able to differentiate between the 

construction-related issues, such as construction-joint cracks, with the deterioration caused 

performance issues. This approach provides the bases for geo-tagging the distresses to 

investigate location-based patterns.  

3- Conduct non-destructive testing on pavement sections to obtain a baseline of mechanical 

stability at the desired locations. With a database with a higher resolution of distress 

distribution, the utilization of non-destructive testing can be manipulated to validate 

alarming trends or verify red flags.  

4- Pavement structural plans should contain locations by the stations and GPS coordinates. 

This is achievable at an easier level if the DOT adopts 3-D modeling in project 

documentation and plans. Such effort is already undertaken in Wisconsin, Iowa, Georgia, 

and Pennsylvania. It is also promoted by the FHWA. However, its intended utilization is 

for preconstruction streamlining. In-service study of transportation infrastructure offers a 

post-construction utilization of this new technology. This is because the 3-D models 

provide the basis for the geo-referencing of the data in relation to other components of the 

asset. This is especially critical in studying other classes of pavements and in studying 

bridges. The structural plans should also recognize the DOT segmentations throughout, 

defining the construction stations within the associated DOT segments. 

5- Quality data collected during material production or during placement and compaction 

needs to be tagged with their GPS location. Proper labeling and storing of data needs to be 

a requirement as much as passing specification limits.  This was a major challenge in this 

project. Many pavement sections were supposed to have their placement density records 

stored at the online portal; however, they were not. This could be due to the fact that the 

primary objective of this data is compliance. This needs to be changed, as it is revealed that 

the collected as-built information is valuable in developing more accurate prediction 

models and diagnostic analysis, which can consequently facilitate better-informed 
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decision-making. Moreover, continuous storage of the quality data would serve as a means 

to find the individual quality patterns for different contractors, materials, procedures, and 

equipment used in the state.  Cloud storage is an excellent resource for storing this data and 

for ease of integration in larger databases.  

6- Maintenance activities must be recorded by locations and time in detail. They could be 

connected to the 3-D model in the post-construction mode. Depending on the type of the 

used maintenance activity, any changes to the structural properties of the pavement should 

also be recorded. 

7- Data for all aspects of the pavement life cycle must be accessible and connected to allow 

for retrieval of complete pavement history. This requires re-examining the jurisdiction and 

ownership of the data by the different bureaus within the DOT.  

8- Once the agency’s data is properly stored and geo-tagged, artificial intelligence is used to 

create the machine-learning deterioration models for the appropriate classes of pavement. 

However, these deterioration models must be updated regularly as part of the management 

plan. The model update needs to be synchronized with distress survey efforts, maintenance 

activities and other collected data.  

9- In addition to the above-mentioned implementation steps, it is also suggested to; 

a. Develop a coding system for different suppliers, material types, and procedures. 

These codes, suggested to be barcodes, can be easily linked to the collected data 

during design, production, construction and performance stages. This would enable 

DOT to conduct a fast inquiry for this type of information at any given location, 

even years after the construction.  

b. Have a traffic count measurement system that can be easily synced with the DOT 

highway segments. It is suggested that DOT adopt a similar geo-referencing system 

for all traffic-related data. Traffic data can be recorded for every DOT segment 

within a designed time period. Such that data is crucial for a better deterioration 

prediction.    

c. Find the best way of representation for climate data on every DOT segment. This 

study developed weighting factors for every project (which includes multiple 

segments) to extract climate data from the nearby weather stations. This effort can 

be complemented at the segment level. Calibrating these factors or even developing 
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better means for climate data measurements at the scale of pavement segments, not 

for the entire project, can significantly enhance the application of the suggested 

framework. Having a reliable and geo-tagged climatic data for WisDOT roadway 

network can help to broaden the application of the developed database beyond the 

performance of pavements, for the soil-related problems such as landslide, 

expansion, collapse, freeze-thaw, and etc. 

d. Adopt a universal geo-tagging system for all the highway-related tests conducted 

as part of research studies or other efforts that are being done on the WisDOT 

network. Such a system would help to store the collected data in the central database 

and help other researchers to extract and use them for other purposes. For example, 

this study discovered several datasets related to coring information, nondestructive 

testing results, and other field or lab tests, which were conducted as a part of state 

and national funded studies on the WisDOT network. This data would have been 

helpful to develop better prediction models. However, due to the lack of geo-

referencing of such data, it was not possible to integrate them into the developed 

database. Using a common geo-referencing system, such as GPS location, and 

requiring the researchers and contractors to geo-tag the reported data, could 

significantly boost their application. 

e. Incorporate the current and future real-time data collection systems, such as the on-

site sensors in WisDOT to the pavement network database by geo-referencing their 

collected data. WisDOT is using sensors for collecting data on roadways regarding 

the weather conditions, soil properties, traffic measurements, and special structures 

such as bridges. Interrelating these measurements to other pavement performance-

related components throughout a universal geo-referencing system can enhance 

their application. This can also improve the ability of DOT to faster and more 

accurate actions with regards to the complex problems, that cannot be reflected with 

the data extracted from a single parameter. For example, having a localized weak 

base layer may not need immediate attention, but if it combines with the received 

data regarding the passage of high load traffic and rapid fluctuations of water level 

in the base, coming from the nearby sensors, then it requires urgent actions to 

prevent a dangerous situation. With the current advances in the field, especially the 



114 
 

Internet of Things (IoT), these data collection systems can be interrelated to 

computing devices, mechanical and digital machines with their unique identifier 

which is their geo-tag. This enables them to transfer data over the network with less 

requirement of human-to-human or human-to-computer interactions. This is the 

path toward future smart cities. 

Finally, the implementation of the aforementioned recommendations should be a resource for 

adopting data-driven performance-based specifications, either at the mix design level or the 

construction level. The data-driven models should serve as a verification tool for adopted limits in 

order to connect laboratory activities with in-service performance. The growth of the database 

within the network for all classes of pavements must be utilized at scheduled times as a means of 

self-validation of specification limits, construction practices, maintenance plans, and 

rehabilitation. They can serve for project scoping as a history of similar pavements with respect to 

location, traffic level, environmental condition, or structural design can be easily retrieved to 

evaluate performance and apply improvements when needed. 
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