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SUMMARY 

Bulb‐tee prestressed girders, used in Wisconsin for highway bridge construction, 

consistently exhibit cracking near the girder ends when under high prestress. The 

recommendation of a previous Wisconsin Highway Research Program analytic study was to 

efficiently eliminate girder end cracking by debonding prestressing strands near the girder 

ends. 

The research program described here evaluates the strategy selected in the previous 

study through actual implementation, and provides recommendations for the design of the 

standard sets of Wisconsin 54W and 72W girders with debonded strands. The focus is 

primarily aimed at eliminating cracking in the bottom flange of the girders where cracks 

could allow moisture to reach prestressing strands and induce corrosion that migh affect 

the girder capacity. 

Prestressed girders, 72 and 54 inches deep, were designed and built using three 

different debonded designs along with two standard designs to evaluate and prove the 

effectiveness of debonding. The girders were instrumented with various gages to record 

internal strains and detect cracking during the prestressing or detensioning process. 

Then detailed analytical finite element models (FEM) of the girders were assembled 

using non‐linear behavior to simulate the concrete cracking in the actual girders.  The 

response predictions from the analytic models were compared with the measured response 

quantities from the actual girders to verify the accuracy of the analytic approach. 

Finally, analytical modelling was employed to examine a wide range of possible 54 

and 72 inch deep girder designs to select debonding patterns and the number of debonded 

strands that would best provide the desired uncracked performance in the girders. These 

studies resulted in a set of recommended girder designs that the Wisconsin Department of 

Transportation could use to create alternate standard girder designs in the WisDOT Bridge 

Manual. 

MEASUREMENTS 

Construction of a Wisconsin 72W girder, with 25% of the prestressing strands 

debonded for various lengths at the girder end, proved that debonding can significantly 
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reduce the concrete tension strains developed during detensioning. The tension strains 

measured in reinforcing bars of the debonded girder were at least 200 (micro strain) less 

than strains in a normal girder. In the critical bottom flange the strains in stirrups of the 

debonded beam were only 30% of the strains in a normal girder. Concrete gages measured 

tension strains in the bottom flange of the normal beam that were 21 times the strains in 

the debonded girder. The debonding was very effective in reducing concrete tension and 

cracking, but 25% debonding was found to be insufficient to prevent bottom flange cracking 

in a girder with high prestressing. 

Two alternate debonding designs were used in the construction of Wisconsin 54W 

girders.  One girder had 38% of its strands debonded for various distances at the end, the 

second had 62% of the strands debonded for only 8 inches. Both designs were successful in 

eliminating bottom flange cracking that was evident in normal 54W girders with high 

prestressing. The horizontal tension strain in the bottom flange concrete of the debonded 

girder was 45 while the normal girder showed 1050. The total length of end cracks was 
326in. in the normal girder, 56in. in the 38% girder, and 261in. in the 62%‐8inch girder. 

While debonding for only 8 inches was effective in controlling bottom flange cracking, it 

may increase horizontal web cracking. This is not critical, however, since those cracks tend 

to close as addition dead and live load is carried by the girders. 

 

RESULTS 

Bottom flange Y cracking, that is detrimental to durability, can be eliminated by 

debonding the appropriate number of strands.  When high amounts of prestressing are 

used, more than 26 strands, the AASHTO limit of 25% debonding is insufficient in 

eliminating flange cracking. Other states, such as Texas, build girders with as much as 50% 

debonding without detrimental bond effects. When a 72W girder has a full complement of 

48 strands, debonding of 42% to 50% of the strands is necessary to eliminate flange 

cracking. A complete summary of the number of strands to debond, and best strand 

patterns, has been developed and they are provided as recommended designs in Chapter 8, 

and specifically in Table 8‐1 (p173) and Figure 8‐4. 

The experimental and analytical investigations also identified other design 

suggestions to reduce concrete tension stresses and amounts of cracking, though they are 

insufficient to eliminate bottom flange cracking.  
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DESIGN SUGGESTIONS 

1. Using staggered debonding or debonding all strand for 8 inches to 12 inches should 

be recommended in the WisDOT Bridge Manual to eliminate bottom flange Y 

cracking in Wisconsin 54W and 72W prestressed concrete girders, particularly when 

a large numbers of strand are used. (see page 179) 

 

2. The quantities of debonded strands and debonding patterns shown in Figure 8‐4 of 

this report should be considered for creating debonding alternates to Standards 

19.16 and 19.18 in the WisDOT Bridge Manual. (pages 174‐75) 

 

3. The girder specifications should be changed to include a requirement that when 

precasters cut strands during detensioning the inner columns of strand should be 

cut before the outer columns, i.e. strand cutting should proceed from the inside of 

each row toward the outside. (see pages 107& 160) 

 

4. The standard girder end design details that show five #6 sets of vertical web bars at 

the girder ends could be changed to show three sets since the strain results showed 

that the additional bars further from the girder end have low strains and are 

ineffective in crack control. (see Figures 5.15&16, page 75, and Figures 6.15‐17, 

page117) 

 

5. The bottom flange stirrups and banana stirrups, i.e. the short #3 bars placed 

horizontally near the top of the bottom flange, should either be eliminated from the 

standard details or they should be specified without epoxy coat. The epoxy coated 

bars in the test girders were ineffective as shown by very small strains, likely due to 

insufficient bond due to the epoxy coating. (see Figure 5.20, page 79, and Figures 

6.18‐20, page 119) 

 

6. When multiple girders are cast in‐line, the precaster should minimize the space 

between bulkheads at the end of adjacent girders. This will reduce the length of free 

strand at the girder ends.  When the strand is flame cut the strand stored energy is 

released and causes dynamic loading of the end anchorage in the concrete and can 

increase end cracking. If the cut is made close to the girder end, then less energy is 

released and end cracking may be reduced. (see pages 131‐132) 
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ABSTRACT 

Wisconsin bulb tee pretensioned concrete girders are currently used for bridge construction. 

Their efficiency in load resistance has made them particularly desirable. To provide that 

efficiency, these girders are heavily prestressed. Cracking is evident, however, at the girder 

ends during de-tensioning. These cracks may create durability and capacity problems as 

cracks can lead corrosive water to the steel strands, endangering the structure. Cracks in the 

bottom flange, close to the strands, are the main concerns of this study. The primary focus 

was on proving the effectiveness of strand debonding at girder ends as a solution to cracking. 

This was accomplished through construction of prototype girders, monitoring their behavior, 

and using analytical techniques to understand the cause of the cracking A second goal was to 

provide the Wisconsin Department of Transportation with design recommendations for 

effectively using debonded strand in girders. 

The construction of girders with debonded strand for two bridges proved that debonding was 

an effective solution for end crack control and elimination. Comparison of analytic predicted 

behavior and measured girder response data showed that the nonlinear analysis techniques 

used were accurate.  Those techniques were then used to examine the behavior of Wisconsin 

54W and 72W girders with various strand debonding patterns to provide the Wisconsin 

Department of Transportation with recommendations for the best girder designs, in a range of 

strand contents, using debonded strands. 
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1 INTRODUCTION 

1.1 Definition of Problem 

One of the reasons for using concrete as a construction material is because of its 

strength in compression. Concrete is weak in tension and can crack. With the invention of 

prestressed concrete, concrete tension forces are counteracted by stressing in advance, 

thereby inducing compressiuon and using concrete’s strongest property. When combined 

with high strength concrete, cracking can be decreased, deflections can be reduced, and 

smaller sized members are possible resulting in lighter structures. This technology has gained 

popularity among designers, particularly for bridge structures.  

 Bridge designers currently use deep wide flanged pretensioned, bulb tee, concrete 

girders in many bridge projects. Their wide top flanges provide stability and carry the 

flexural compression block high in the girder for a longer moment arm. This provides 

improved efficiency resulting in small number of girders or longer span capabilities. High 

pretension force is often applied to those girders. 

The ends of these girders are where the prestressing, from steel stressing tendons 

under initial tension, is applied to the concrete. The transfer is achieved by bond between 

tendons and concrete that develops when the tendons are released, from their initial tension 

state, and they try to shorten while connected to the concrete. Even though the tendon or 

strand pretension force is released gradually, tensile stresses or bursting stress develop in the 

concrete. These secondary stresses are often enough to create cracks in thin sectioned 
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Many researchers have addressed the strength behavior of girder end zones by using 

empirical methods, simplified linear elastic concepts, or strut-and-tie methods. The empirical 

and strut-and-tie methods are focused on the ultimate strength condition and involve non-

linear material behavior, but cannot be correctly used to predict service behavior. The linear 

material methods are only appropriate until initial concrete cracking occurs. Due to cracking, 

the true strain distribution is not correctly defined with linear analysis methods. 

Unfortunately nonlinear analysis of girder ends in the service condition has not been 

provided in most currently available literature. Aware of the lack of comprehensive nonlinear 

analysis work for the problem, this research selected the ABAQUS software program to 

examine the behavior of girder ends with the explicit use of nonlinear finite element analysis 

(FEA). 

1.2 Objective 

Two main objectives are involved in this project. The first is to prove, through 

physical testing and observation, that the use of debonded prestressing strands at the girder 

ends can reduce or eliminate the cracking problems. Assuming that debonding is proved 

effective, the second objective is to provide the Wisconsin Department of Transportation 

(WisDOT) with design recommendations for unbonded 54W and 72W prestressed girders.  

Girder end behavior and factors of cracking need to be understood in order to control 

cracking. Therefore a secondary aim, needed to meet the objectives, is to investigate and then 

model how the strain and stress take shape in nonlinear girder ends with pretensioned forces. 

For this purpose, girders are modelled in ABAQUS 6.12 with nonlinear material properties. 
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1.3 Scope of the Project 

54 in. and 72 in. deep concrete bulb tee girders will be analyzed and tested to examine 

and control cracking. Wisconsin standard wide flange girders are examined. This project only 

focusses on end cracking observed in WisDOT girders due to high forces during the prestress 

or detensioning process. Other types of cracks are not investigated. Shortly, this research will 

pursue the following items: 

‐ Initially predicting end zone behavior of bulb tee girders through nonlinear models, 

‐ Veirfying FEA methods by comparison with measured test results, 

‐ Examining how the prinicipal strains and stresses occur in nonlinear girder ends with 

pretension forces, 

‐ Finding the amount of strand debonding that should be used to prevent end cracks 

from occurring, 

‐ And selecting the most efficient debonding method. 
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2 LITERATURE REVIEW 

 

Girder anchorage zone cracking was observed as early as the 1960s, shortly after 

prestressing became an accepted practise. Now cracking is of greater concern because thinner 

and deeper sections than previously seen are used with higher amount of prestressing. In this 

chapter, code provisions for crack control in pretensioned members and recent studies about 

modelling anchorage zone cracking are discussed. Though there are other research reports 

available on prestressed girders, like analytical studies or empirical and semi-empirical 

studies, they are not mentioned here as they are not related to the current end cracking 

problem.  

 

2.1 Codes for Anchorage Zones 

2.1.1 AASHTO LRFD Bridge Design Specifications 

The rules for pre-tensioned anchorage zones are given in 5.10.10 section of AASHTO 

LRFD Bridge Specification (3).  

In the commentary on splitting reinforcement, AASHTO indicates that “Splitting 

resistance is of prime importance in relatively thin portions of pretensioned members that are 

tall or wide, such as the webs of I-girders and the webs and flanges of box and tub girders. 

Prestressing steel that is well distributed in such portions will reduce the splitting forces, 

while steel that is banded or concentrated at both ends of a member will require increased 

splitting resistance.” 
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The splitting resistance of pre-tensioned anchorage zones to be provided by 

reinforcement in the ends of pre-tensioned beams is given by Equation 2-1. 

ܚ۾                                                     ൌ ܛ܎ ∗  Equation 2-1																																			ܛۯ

Where: 

fS= stress in steel not to exceed 20 ksi. 

As =total area of reinforcement located within the distance h/4 from the end of the 
beam (in2) 

h =overall dimension of precast member in the direction in which splitting resistance 
is being evaluated (in). 

 

AASHTO specifies that the stress in reinforcing bars that are resisting splitting should not 

exceed 20ksi. The purpose of the choice of the 20 ksi stress limit in steel is to control crack 

size. Also, for pre-tensioned I-girders or bulb tees, the area of steel referred to is the total area 

of the vertical reinforcement placed within h/4 from the ends of members.  

The code also states that “For the distance of 1.5d from the end of the beams other than 

box beams, reinforcement shall be placed to confine the prestressing steel in the bottom 

flange. The reinforcement shall not be less than No.3 deformed bars, with spacing not 

exceeding 6.0 in. and shaped to enclose the strands.”  This reinforcement is generally 

assumed to control the cracks occurring around the perimeter of strands as they prevent the 

concrete bursting. 
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2.1.3 American Concrete Institute 318-14 (5) 

This code is mainly concerned with post-tensioned anchorage zones and the code refers 

to the provisions in the AASHTO Standard Specifications for Highway Bridges (3). 

 

2.2 Research on Anchorage Zone Cracking 

2.2.1 Studies of Finite Element Analysis 

Kannel et al. (6) examined the strand cutting order and debonding & strand cutting 

order together using FEA as a crack control method. They observed three different types of 

cracks in the girders they examined in Figure 2-4; cracking at the base of the web, and 

inclined and vertical cracks on the sides of the bottom flange. They built FEA models in 

ABAQUS to explore 3-D effects in the anchorage regions through the transfer length. The 

concrete and strands were modeled with 3D solid and truss elements respectively as shown in 

Figure 2-5. To lessen computational times, the remainder of the girder (after transfer length) 

was modeled with beam elements and girders were symmetrically cut in half both in the 

longitudinal and transverse directions. Lastly, the transfer of prestress from strands to 

concrete were modelled with two different cases:  1) assigning a varying area for the truss 

elements along the transfer length (ramped area method) and 2) utilizing springs to connect 

the truss to concrete elements, both of which gave close results. 

 They thought that changing strand release order would considerably decrease the 

stresses because they found out that the cause of cracks is mainly due to the concrete restraint 

of the uncut strands and shear stress initiated by the cutting order of strands. The study 
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interaction, Carroll tried to simulate the pre-stressing force by a change in temperature 

applied to the truss elements, ensuring equivalent strain equal to that produced by pre-stress 

force. 

 To compare the analytic and experimenalt data (from gauges), 23 models (8 prisms 

and 15 T beams) were built. T beams had 17in., 19in. and 24in. depths and they all 

accommodated only 3 strands and prisms had a maximum of 5 strands in a 24in x 4in cross 

section shown in Figure 2-7. 

  Figure 2-8 shows the comparison of experimental concrete surface strains and 

analytical concrete strains for one prism and one typical T beam model. The maximum errors 

are 20% for prisms and approximately 40% for T beams. Even though the comparison has 

errors, the authors used linear elastic behavior without justification. They also made a 

conclusion that the comparisons confirm the practicality and accuracy of the models. The T 

beams are heavily pre-stressed and show some cracks around strands, so the results of beams 

having only 3 strands cannot be modelled with linear elastic material property and might not 

represent the case with larger amount of strands in deep girders.  
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Monitoring end zone reinforcement, they found that strain gauge results in end zone 

reinforcement showed strains higher than the strain capacity of the concrete, so models 

should be built with nonlinear concrete properties. The Gergely-Sozen procedure (10), meant 

for an ultimate strength condition, did not predict the high tensile stresses observed at the 

web and bottom flange interface during de-tensioning.  The bar stresses were about 85% 

higher than the 20 ksi limit (AASHTO). Also, the stress transfer of strands was Judged to 

vary in a parabolic fashion, rather than being linear as assumed by the AASHTO LRFD 

specifications. This woiuld mean that AASHTO significantly underestimates the tensile 

stresses in parts of the anchorage zone during release. 

From the finite element analysis results with all girders, the authors observed that the 

stress distribution showed that the requirement of distributing the end zone reinforcement 

within a distance equal to h/4 from the girder end was needed, as noted in the AASHTO 

Specifications. However, the stress distribution shows that a relatively high stress 

concentration extends beyond h/4 to about h/2 (Figure 2-11), where no end zone 

reinforcement is needed according to the AASHTO LRFD specifications recommendation. 

They suggested the findings of Tuan et al. (12) that put 50% of the end zone reinforcement 

within h/8 and the remainder of the end zone reinforcement between h/8 and h/2 from the 

end. Also, the finite element analysis predicted the correct location of highest tensile stress, 

which was observed at the web and bottom flange interface but at a lower height than that 

suggested by the Gergely-Sozen (10) procedure.  
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Ayoub et al. (13) presented methods to model pre-tensioned girders with nonlinear 

material properties. The model consists of three main components: a beam-column element 

for the behavior of concrete, a truss element for the pre-stressing tendons, and a bond 

element that describes the transfer of stresses between the pre-stressing tendons and the 

concrete. The model is primarily depending on a two-field mixed formulation, where forces 

and deformations are both approximated within the element. The nonlinear response of the 

concrete and tendon components are based on the section discretization into fibers with 

uniaxial hysteretic material models. The stress transfer mechanism was modeled with a 

distributed interface element with special bond stress-slip relation. They also presented a 

method for accurately simulating the pre-stressing operation. To test the accuracy of models, 

they conducted correlation studies with the proposed model and these studies confirmed the 

accuracy and efficiency of the model. 
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3 PRESTRESSED GIRDERS 

3.1 Pretensioning and Post-tensioning 

 Concrete is a good structural material for carrying compressive loads but not for 

tension loads. Therefore, conventional concrete is combined with high strength steels, in 

order to avoid resisting tension in the concrete. In that way, steel reinforced concrete 

members will be strong both in tension and compression. Though this method eliminates the 

need to resist tensile stresses in the concrete, it should end up with small cracks in the 

concrete body. Fewer cracks provide a stiffer cross-section so large cross-sectioned concrete 

members are not needed. This allows designers and engineers to design lighter structures.  

Prestressing is a special method for reinforcing concrete. Prestressed concrete can be 

divided into two categories:  pretensioned and post-tensioned. In pretensioning, high strength 

strands, called tendons, are first tensioned inside molds, and then concrete is cast around 

them. After the concrete gains sufficient strength, the strands are cut and the force in steel, as 

it tries to shorten again, is transmitted to concrete by bond over a distance from the end of the 

members, a distance  known as the transfer length. Energy stored, due to initial stretching of 

tendons, is also transferred to concrete through bond between concrete and tendon over that 

distance. An initial compression force is induced in the concrete.  

Another method for prestressing is post-tensioning. In this method, hollow ducts and 

strands are threaded before concrete is cast, and after concrete reaches sufficient strength the 

strands are stressed by means of hydraulic jacks and then clamped at their ends. And finally, 

the duct is filled with grout to protect tendons from corrosion. 
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 The main difference between the two methods is the way the prestressing force is 

transferred to the concrete body. In pretensioned members, the transfer gradually occurs 

through bond over a distance from member ends;, in post-tensioning, the force transfer is 

achieved by mechanical anchors at the end face of the members.  

 

3.2 Types and Properties of Pretensioned Highway Bridge Girders 

There are four standard types of deep wide flange prestressed girders that WisDOT 

has been generally using for bridges: 45W, 54W, 72W and 82W sections. The numbers 

indicate the depth of girders in inches. Currently Wisconsin is not using the 82W girders due 

to end cracking problems and shipping difficulties.  Only 54W and 72W girders are 

investigated in this project due to their cracking problems. The letter “W” after the numbers 

denotes the “W”ideness of girders. Regardless of the girder’s height, all girders have the 

same top and bottom flange shapes, which are respectively 4 feet, and 2.5 feet in width 

(Figure 3-1). They have been proven efficient in resisting loads over long spans. The wide 

top flange provides a compression block with large area and the big bottom flange can 

accommodate numerous steel strands. These girders can be designed with up to 8 draped and 

a total of 40, 42, 48, and 50 strands for respectively 45in to 82in girders. Spans to 170ft can 

be reached.  
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Figure 3-3. Also, they are observed during inspections to be the longest cracks among the 

others occurring at the end of girders. One interesting observation of these cracks is that they 

sometimes do not continue to the girder end, meaning that their formation may not originate 

from the end but further inside the girder.  

After prestressing, these girders are taken to a storage yard.  Continued observation of 

cracks has been done during storage. Generally, the width of these cracks is between 0.004-

0.010 inches. If these cracks are not closed by vertical loading on the girder or covered by the 

concrete end diaphragms, they may allow moisture penetration causing durability problems. 

However, these cracks are generally found to be closed by the principal compression stresses 

from shear force flow coming from added dead loads or service live loads. Therefore these 

cracks may not be of serious consequence. 

Horizontal Web Cracks:  Horizontal web cracks are horizontal cracks in the thin web 

with their  location, length and distance between varying according to the girders’ depth and 

the number of strands. Even though their widths range between 0.004-0.010 inches, these 

cracks propagate only a short distance from the end so the cracks may be buried inside of 

concrete diaphragms cast around the beam end on the bridge site. They are also likely to be 

closed as further loading is applied to the girder and the end reactions increase. Their effect 

on durability of the structure, though visually undesirable, may be tolerated. 

Y Cracks:  Y-cracks take shape at the junction of the bottom flange and web. These 

cracks often run vertically through the bottom flange where there is a high concentration of 

strands. The Y cracks are also the widest measured cracks, as wide as 0.02 inches. Rather 
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than experiencing closure with added girder loading, these cracks actually tend to open as 

more loading is applied. Therefore, these type of cracks are of serious concern because of a 

tendency to lead to aggressive salty water to penetrate in the concentrated location of tendons 

and cause corrosion of tendons. Corrosion spreading along the strands may put the structure 

in danger of shear failure so this type of cracks should be considered as a dangerous one 

. 

3.4 Splitting Resistance and Confinement Reinforcement at Anchorage Zone of 
Standard Girders 

 

Reinforcement in the anchorage zone of Wisconsin W girders should comply with 

5.10.10.1 and 5.10.10.2 Sections of the AASHTO LRFD Bridge Design Specification (3). 

While evaluating this reinforcing, the maximum strand numbers that each girder can 

accommodate from the WisDOT manual (14) was considered. As described in the AASHTO 

specification (3), the steel stress is limited to 20 ksi to control crack widths. This limit is very 

important, especially for I or W girders in their thin portions. Table 3-1 & Table 3-2  show 

sample calculations on amount of bursting steel reinforcing in the anchorage zone done for 

72W and 54W girders. They seem to satisfy the splitting resistance condition. 

 

 

 

 



29 
 

72W Girder 

AASHTO 5.10.10.1 Splitting Resistance 

Pr=fs*As                                                         
Pr > 4% of the total prestressing force                             

Depth of prestressed girder (in), h= 72 

Strand Number, n= 48 

Area of a strand, Astrand (in^2)= 0.217 
Tensile Strength of strands (ksi), fpu= 270 
Initial prestressing force at transfer (ksi), 0.75xfpu= 202.5 
Total prestressing force at the transfer (kips), nxAstrandx0.75xfpu= 2109 
Stress in steel (ksi), fs= 20 
h/4 (in)= 18 

Stirrup bars in h/4 in from the end 10#6+2#4

Total area of steels within h/4 in distance from end (in^2),As= 4.81 
The splitting resistance (kips), Pr= 96.2 
Pr/Total prestressing Force (%)= 4.56 
Condition for Pr > 4% Provided 

Table 3-1. The calculations on amount of bursting steel reinforcing in the anchorage zone for 
72W girder. 

 

For the confinement or bursting reinforcement, the code suggests that they should be 

minimum #3 rebar with 6 inches apart from each other within 1.5*d from end of girders. This 

condition is provided in each WisDOT girder.  
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54W Girder 

AASHTO 5.10.10.1 Splitting Resistance 

Pr=fs*As                                                      
Pr > 4% of the total prestressing force                            

Depth of prestressed girder (in), h= 54 

Strand Number, n= 42 

Area of a strand, Astrand (in^2)= 0.217 
Tensile Strength of strands (ksi), fpu= 270 
Initial prestressing force at transfer (ksi), 0.75xfpu= 202.5 
Total prestressing force at the transfer (kips), 
nxAstrandx0.75xfpu= 

1845 

Stress in steel (ksi), fs= 20 
h/4 (in)= 13.5 

Stirrup bars in h/4 in from the end 10#6 

Total area of steels within h/4 in distance from end (in^2),As= 4.42 
The splitting resistance (kips), Pr= 88.357 
Pr/Total prestressing Force (%)= 4.79 
Condition for Pr > 4% Provided

Table 3-2. The calculations on amount of bursting steel reinforcing in the anchorage 
zone for 54W girder. 

 

3.5 Summary 

 Their efficiency, durability and economy make precast wide flange or bulb tee girders 

preferred in bridge projects. They can accommodate large numbers of strand resulting in high 

prestressing force, so some cracking has occurred in the anchorage zones at the girder ends..  
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 Among all cracks described, “Y” cracks in the bottom flange are the most dangerous 

type of cracks because of the tendency to lead aggressive salt water to penetrate where 

concentrated tendons are located, possibly endangering the structures’ safety.  

 From a reinforcement point of view, WisDOT girders are satisfying the requirements 

of the AASHTO LRFD Design Specifications to control cracking at the ends. Since 

undesirably large cracks still frequently  occur, the reinforcement is not satisfactorily 

controlling the cracking and additional measures may be necessary. 
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4 FINITE ELEMENT MODELLING 

  

Because of cracking, in analytic modelling of the precast girders the stress-strain 

behavior should not be represented with linear analysis but with nonlinear analysis in the 

girder end regions. A software package, ABAQUS/CAE 6.12 (Dassault 2012) (14), capable 

of simulating non-linear concrete behavior, was used to investigate the girder ends using 

finite element analysis (FEA).  

4.1 Geometry of the Girders 

Models of standard 54W and 72W girders were developed according to the 

dimensions in standard WisDOT plans for cross-sections and the end reinforcement detailing. 

 The girder lengths and the number of strands were carefully chosen from the 

Wisconsin Highway Structures Information System (15). While choosing, it was desirable to 

have the maximum number of strands that each girder can accommodate and maximum 

length that each girder can span to observe conditions meeting the highest girder load 

capacity. With the high prestressing a larger amount of end cracking has been observed in 

practise.  Table 4-1 shows the girders’ length and number of strands modelled with Abaqus 

and maximum span length that each girder type is allowed in accordance with the WisDOT  

Bridge Manual (14). 
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Girder 
Type 

Length 
(ft.) 

Number of 
Strands 

Real Life Project where 
these                 

girders were used (15) 

Maximum Span for 
single span-(ft.) (16) 

54W 125 
8 draped + 34 

straight 
B-05-0682 132 

72W 154 
8 draped + 40 

straight 
B-05-0381 160 

Table 4-1. Types of girders modelled in Abaqus. 

 

4.2 Review of Finite Element Models 

 Overall, the girder models are mainly constituted of three parts: 

‐ Nonlinear end zone of concrete girder, 

‐ Linear part of concrete girder, and 

‐ Reinforcing steel. 

Only end zone cracking is investigated in this study, so it is not necessary to model the 

full length of a girder with nonlinear material properties, as nonlinear computations can be 

demanding. Based on St. Venant’s principle, the stresses and strains are anticipated to be in 

linear distribution over the depth after a distance at least equal to the beam depth away from 

the end zone disturbed region where the prestress force is applied (17). Therefore, the length 

of nonlinear modelling was restricted to 2 times the girder depth with the assumption that this 

will not cause significant error in overall results because there were no cracks observed in 

actual girders at a section 2 times depth of girder away from the end.   

Moreover, the size of the models decreased by modelling only a quarter of the full 

girders. Girders are symmetric about the center of the girder’s cross-section and about the 
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 The cracks in the pretensioned girders were observed to occur during the de-

tensioning process. Therefore, there is some stiffness loss in the body. Stiffness loss of 

concrete and the crack growth cannot be simulated with a linear elastic model. 

 

4.3.1 Concrete Material Properties 

There are three different constitutive models for concrete in Abaqus: “the Concrete 

Damaged Plasticity”, “the Smeared Cracking”, and “the Brittle Cracking” types. The 

“Concrete Damaged Plasticity” is used for the present model as it: 

 enables modeling of concrete and other quasi-brittle materials in all types of 

structures, 

 utilizes an isotropic damaged elasticity concept with isotropic tensile and compressive 

plasticity to describe the inelastic behavior of concrete under any arbitrary loading 

condition, 

 is primarily designed for the analysis of reinforced concrete structures, 

 can implement different degradation of the elastic stiffness in tension and 

compression (19) 

 was successfully used in an initial phase of this research work (1). 

Abaqus uses the work of Lubliner et al. (20) and Lee (21) in defining the concrete 

damaged plasticity constitutive model. 
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The equations for linear material properties, i.e. before cracking, are taken from the 

AASHTO LRFD Bridge Design Specifications (3) and the equations for nonlinear properties 

are obtained from the FIB 2010 Model Code (4). 

The concrete damaged plasticity model requires input on the compressive behavior, 

tensile behavior of concrete, and concrete plasticity parameters. These are discussed below. 

4.3.1.1 Compression Properties of Concrete 

Initial Elastic Portion: The mechanical response of concrete under applied stresses 

may be assumed to stay within the linear regime up to approximately 40% of the design 

concrete strength. To represent this behavior, the modulus of elasticity, poisson’s ratio, and 

density of concrete were used as input in Abaqus.  

 Because of data absence, the modulus of elasticity in the linear regime is calculated 

from section 5.4.2.4 of the AASHTO LRFD Bridge Design Specifications (3) and is based on 

the actual measured concrete cylinder strength just before de-tensioning. 

஼ܧ ൌ              (ksi)                                                   Equation 4-1	஼ଵ.ହඥ݂ᇱ஼ݓଵܭ33000

Where   K1= correction factor for aggregate (taken as 1), 

 wC= unit weight of concrete (in ksf) 

 f’C= compressive strength of concrete at de-tensioning (ksi) 

In order to use this equation, the unit weight should be in between 0.09 – 0.155 kcf. It 

depends on the specified compressive strength of concrete according to Table 3.5.1-1 in 
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AASHTO LRFD BDS (3). In the precast plant, the strength value was observed to be always 

higher than 5 ksi so the equation is:  

஼ݓ ൌ 0.140 ൅ 0.001݂ᇱ஼	           for 5.0 ksi < ݂ᇱ஼	 < 15.0 ksi                  Equation 4-2 

The highest value was 7808 psi for a 72W girder so the wC value is taken as 0.148 kcf 

which is in the range of specified values to use this equation. 

The poisson’s ratio was assumed to be 0.2  from section 5.4.2.5 of AASHTO (3) 

again because of a lack of physical tests. 

 Inelastic Portion: After the elastic limit, the concrete behavior is plastic. Therefore, 

the stiffness relation cannot be represented by the linear stress and strain relation. The 

compressive behavior can be defined by defining the values of yield stress and corresponding 

inelastic strain for the program. 

 The FIB model Code 2010 (4), section 5.1.8.1, estimates the compressive behavior of 

concrete by the following equation: 

ఙ೎
௙೎೘

ൌ െቀ ௞∗ఎିఎమ

ଵାሺ௞ିଶሻ∗ఎ
ቁ |ߝ|			ݎ݋݂										 ൏ 		  ௖௟௜௠|                                         Equation 4-3ߝ|

Where: 

η=
ఌ೎
ఌ೎భ

        and            k=
ா೎೔
ா೎భ

 

εC: Concrete compressive strain 

σC: Concrete compressive stress- psi 
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testing for specific characteristics could be conducted. If the concrete cylinders were tested 

later in the lab, they would not be the correct values because the concrete continues to gain 

strength and properties change.  

 After inputting the yield stresses and corresponding inelastic strain values to Abaqus, 

the constitutive model graph (Figure 4-3) of concrete compressive behavior for the 72W 

girder model having an initial 7800 psi concrete compressive strength is obtained. Please 

refer to the Appendix to see the details of the calculation. 

 

Figure 4-3. Compression constitutive graph with the model of a bonded 72W girder 

4.3.1.2 Tension Behavior of Concrete 

Like compressive behavior, the tensile behavior is defined in elastic and inelastic 

stages. 
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 Elastic Portion:  Up to cracking, concrete tension stresses can be assumed linearly 

proportional to strains. The modulus of elasticity, density and poisson’s ratio are the same 

values used initially for compressive behavior. 

 The cracking strength, fr, is taken as the limit for the elastic linear region. The 

cracking strength is assumed to be calculated from the AASHTO LRFD Bridge Design 

Specifications Section (3) C5.4.2.7: 

௥݂ ൌ 0.23ඥ ஼݂
ᇱ														݅݊	݇݅ݏ                                                                     Equation 4-4 

Where 

஼݂
ᇱ: Initial compressive strength of concrete at time of de-tensioning. 

 Inelastic Portion:  After the concrete cracking stress is reached, cracks occur. 

Therefore, the model should be defined by non-linear tensile behavior. Abaqus allows users 

to represent the plastic tensile behavior based on strains, crack opening, or fracture energy. 

Crack opening was used here, and is explained by fracture energy concepts, because of mesh 

sensitivity concerns. 

 In the description of the concrete damaged plasticity model (14), if cracks occur in 

localized zones and the mesh does not provide additional cracks, the finite elements do not 

converge to a unique solution because the mesh refinement leads to narrower crack bands. 

This problem can be solved by two applications. Firstly, making use of reinforcing bars with 

the concrete element lessens the mesh sensitivity because the interaction between bars and 

concrete elements redistribute the cracks only if enough tension stiffening is provided. 
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Secondly, in case of little or no reinforcement in the model, Hillerborg's (22) fracture energy 

proposal is assumed to be enough to eliminate the concern. Hillerborg represents the energy 

required to open a unit area of crack, GF, as a material parameter for brittle cracking. This 

approach explains the brittle behavior by a stress-displacement response rather than a stress-

strain response. After concrete is in tension - so that the undamaged elastic strain is small, its 

length will be determined primarily by the opening at the crack. The opening does not 

depend on the specimen's length. Therefore, it is easy to apply this material property to any 

shape. 

 The fracture energy was taken from FIB 2010 Model Code (4) Section 5.1.5.2. 

ிܩ ൌ 73 ∗ ௖݂௠
଴.ଵ଼											݅݊ ே

௠
                                                                       Equation 4-5 

Where fcm is mean compressive strength. 

 Section 5.1.8.2 of FIB 2010 Model Code (4) gives constitutive equations for concrete 

in tension by using crack opening and fracture energy. At the end, post cracking behavior 

will look as in the Figure 4-4. 

௖௧ߪ ൌ ௖݂௧௠ ∗ ቀ1.0 െ 0.8 ∗ ௪

௪೗
ቁ ݓ	ݎ݋݂						 ൑  ௟                                         Equation 4-6ݓ

௖௧ߪ ൌ ௖݂௧௠ ∗ ቀ0.25 െ 0.05 ∗ ௪

௪೗
ቁ ௟ݓ	ݎ݋݂						 ൏ ݓ ൑  ௖                           Equation 4-7ݓ

Where  

σct: tensile stress in MPa 
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Figure 4-5. Tension Model Used in Abaqus: top = before cracking, bottom = post cracking. 

(initial behavior depends on strain, ; post cracking depends on crack width, w) 
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4.3.1.3 Concrete Plasticity Parameters for Tension and Compression 

There is another aspect in the definition of the concrete damaged plasticity model 

needed to define flow potential, yield surface, and viscosity parameters. 

 Dilation angle is the increasing change in volume of concrete under triaxial 

compression with low confining pressure or under uniaxial compression in the plastic range 

due to cracks growing parallel to the compressive stresses (23). The value of dilation angle 

for the girder concrete was picked as 31 degrees based on the previous work of Bae (24).  

 The eccentricity is the rate of function converging asymptotically (14). The default 

value is used for eccentricity which is 0.1. This value indicates that dilation angle is the same 

for a wide range of pressure stresses. 

 To define yield surface, fbo/fco and K values should be input to use the yield function 

proposed by Lubliner et. al. (20) but modified by Lee and Fenves (21) in order to include 

various strength in tension and in compression. fbo/fco is the ratio of initial equibiaxial 

compressive yield stress to initial uniaxial compressive yield stress, and again 1.16 is used - 

which is a suggested default value. 

 K is the ratio of the second stress invariant on the tensile meridian to that on the 

compression meridian. It should be in between 0.5 and 1.0, and a default value was used, 

which is 2/3 (Figure 4-6) (14). 
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4.3.2 Reinforcement Bar Material Properties 

As mentioned earlier, the web reinforcing bars, to h/4 in from girder ends, should not 

exceed 20 ksi stress for splitting resistance according to AASHTO LRFD Bridge Design 

Specification (3), Section 5.10.10.1. The analysis of girders in the Abaqus models showed 

that the reinforcing bars resisting stresses were well below the yield stress. Therefore, the 

yielding of reinforcing bars was not considered and they were modelled with linear elastic 

material. Modulus of elasticity of steel was taken as 29000 ksi based on AASHTO LRFD 

Bridge Design Specifications (3), Section 6.4.1, and poisson’s ratio as 0.3. 

4.3.3 Strand Properties 

  The bond interaction between concrete and strands is very complicated. Previous 

authors have achieved working models, but with a maximum of four strands. Hence, the 

strands are actually excluded from the girder models and the bond force from the strands was 

directly applied to the concrete elements along the interface where the strands would be 

located and over the transfer length of the strands. Further description of the strand-to-

concrete bond forces will be provided in a following section on loads. 

 

4.4 Interactions 

4.4.1 Bond Between Reinforcing Bar and Concrete Bond 

 The rebar elements were modelled as embedded in concrete, meaning that concrete 

elements restrain the translational degree of freedom of steel elements. When concrete 

reaches its cracking capacity, the concrete deformations increase because of the strain 
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softening along with stress capacity drop. Then, the force that was in the concrete should 

pass to steel bars with a redistribution of strain. In this way tension stiffening is implicitly 

defined in Abaqus models by including in the concrete material property.   

4.4.2 Interaction Between Girder and Formwork 

 For the interaction between the girder bottom and the bed or formwork, a “Surface- 

to- Surface contact” was preferred with small sliding formulation. In real life, the girders 

slide over the formwork, due to elastic shortening, while the formwork stays still. Therefore, 

the tangential behavior was set to be frictionless, on the other hand, the normal behavior was 

modelled as “Hard” contact but allowed separation after contact. Thus, the girder is initially 

supported on the formwork, but is allowed to lift off as camber develops during de-

tensioning. 

 

4.5 Boundary Conditions 

 The model is reduced by one fourth to decrease the computer running time because of 

symmetry, so the boundary conditions should be represented to account for the symmetry. 

For that purpose, symmetric boundary conditions were applied at mid-span about a vertical 

plane perpendicular to the length of the girder by setting all displacements in the longitudinal 

direction to zero. Further symmetry required that displacements in a transverse direction at 

mid-width be equal to zero as in the Figure 4-7. The x-axis in the Figure is a transverse axis 

perpendicular to the length, the y-axis is vertical, and the z-axis is along the length of the 

girder. Setting the displacement to zero will automatically set the rotations in the plane 
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 Prestressing force is applied to the girder once the strands are cut. The actual transfer 

of the prestress is achieved by chemical bond, friction and mechanical interlock over a 

limited distance, namely the transfer length. However, this length is not clearly understood 

and may differ for each girder. To find this length, explicit modelling considering interaction 

between strand and concrete would be required. That modelling might include springs, 

friction and cohesion to represent the mechanical, friction and adhesion bond effects (1) as 

well as the Hoyer diameter expansion. However, there is considerable uncertainty regarding 

values of the needed input parameters and those input parameters might change along the 

length and the location of strands. This type of modelling has not been proven or calibrated 

by other researchers when more than a few strands are present and is generally too complex 

to incorporate along each of the strands in a full girder model. That is why during the girder 

tests 3 strain gauges were put along the strands to measure the actual transfer lengths. With 

that information, the prestressing force can be directly applied to concrete without explicitly 

modelling both strands and interaction between concrete and strands. This method does, 

however, neglect the effect of the increasing strand diameter when released. 

 The transfer length is selected here as 60 strand diameters from the end by 

considering both the test results and the AASHTO LRFD Bridge Design Specification 

(3),Section C5.11.4.2, where the diameter of strands is 0.6 in. Therefore, the transfer length 

was calculated as 36 inches from the girder end.  

The change in measured strand stress during de-tensioning for the 72W girders is 

shown by the curve in Figure 4-8 (and its derivation will be described later). The graph was 

idealized as linear between the data points where the strand strain was measured. Therefore, 
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the graph was redrawn piecewise linear in Figure 4-9 and the bond stress between concrete 

and strand could be assumed to be constant (equal to the graph slope) between the data points 

as in Figure 4-10.  

 

Figure 4-8. Measured prestressing force change in strand versus distance from end for 72W 
girder. 

 

-50000
-45000
-40000
-35000
-30000
-25000
-20000
-15000
-10000
-5000

0
0 10 20 30 40

F
or

ce
 C

h
an

ge
 O

n
 S

te
el

-l
b

f 
(C

om
p

re
ss

io
n

)

Distance From End- in

Force vs Distance From End of Girder



51 
 

 

Figure 4-9. Prestressing force change in strand versus distance from end considering 
piecewise linear function for 72W girders. 

 

Figure 4-10. Surface traction force applied to concrete elements in models for 72W Girder. 
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causes a radial expansion because of Poisson’s effect, which helps the locking of strands to 

concrete but causes outward pressure to concrete that might be excessive. This phenomenon 

is known as the Hoyer effect (25). To represent outward expansion Okumus (1) built a model 

in which both concrete and strands are shell elements and then applied positive thermal 

expansion for a corner strand where concrete cover is the least. From models she found out 

that the stress error in neglecting the Hoyer effect was small and will be ignored here. 

 The time dependent effects like creep, shrinkage, etc. were excluded because the 

cracks of interest form during de-tensioning which consumes less than an hour of time. The 

dynamic effects due sudden cutting of strands were also ignored. However, at the draped 

strand hold-down location a point load was applied to the girder as a vertical force since the 

actual hold down is released during the de-tensioning process. 

 Lastly, the effect of gravity load was included in the models. The models are resting 

on rigid formworks and the prestressing will camber the girders up but the gravity girder self-

weight will bring the camber down. The self-weight reaction would create compression at the 

end edge of the girder. In the plants, a steel plate is often put to decrease this concentrated 

force effect and to lessen additional cracking due to the friction caused by the sliding of 

girders while elastic shortening and camber occurs. For this purpose, a bearing pad was 

placed at the bottom of girder to distribute vertical reactions and allow sliding. 
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 Abaqus allows users to change the initial increment for load steps to avoid 

unnecessary iterations. For that purpose, the initial increments of steps which are observed to 

have cracks or nonlinear behavior were decreased to accelerate the analysis. 

 

4.10 Assumptions, Simplifications and Limitations 

 To save time and disk space, some behavior of the girder ends is either ignored or 

simplified. As mentioned before, one of the aims of this study is to create a correct FEA 

model but the main goal is to locate the cracks and to find a method to prevent them. 

 Finite element modelling is by nature an approximate representation of real behavior 

and some errors are inevitable, particularly while simplifying the boundary conditions, 

material properties, etc. The accuracy of the models can be checked with data taken from 

measurements in girders at precast plants as described in the next chapter. 

 Some assumptions, simplifications and limitations are as follow: 

‐ The transfer length of all strands was kept the same regardless of their location. Even 

though the length may change according to the location and confinement, AASHTO 

LRFD Bridge Design Specification allows use of an assumed single length. 

‐ Bottom flange stirrups are epoxy coated but they are assumed to have the same 

perfect bond behavior as bars without an epoxy coat. Also, bar slip was not simulated. 

‐ Strains induced by creep and shrinkage, and thermal change were ignored during the 

short interval for de-tensioning. These strains would be negligible, especially when 

compared to strains introduced by the prestressing. 
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‐ The bond loss between strand and concrete was ignored.  

‐ Any dynamic loading effect due to sudden cutting of strands was ignored as it 

depends on multiple factors that are not well known. 

‐ The restraint on the girder provided by uncut strands while releasing others was 

neglected. This restraint has been found in some circumstances to cause vertical 

cracks across the bottom flange width at the end (26). Vertical cracks were not 

observed in any girders at the precast plants. 

‐ The values of compression strength used in the analysis were taken from the cylinder 

tests at the time of prestressing. Therefore, those values are not 28 days strength. 

However, all constitutive equations taken from AASHTO LRFD Bridge Specification 

or FIB Model Code 2010 and used to normally predict material properties are 

intended for 28 day concrete strength. 

‐ Radial expansion of strands was not considered because the contact properties 

between strand and concrete are very complex and may change according to location 

of strands. 
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5 TEST AND FEM MODELS FOR 72W GIRDER 

 

The ends of prestressed concrete bulb tee girders fracture because of the transfer of 

prestress to slender concrete sections and those cracks are a concern for the sustainability of 

the structures. There are several methods to control cracking such as increasing the area of 

the first five web bars, changing strand cutting order, lowering or spreading harped strands, 

debonding some of the strands at the ends of girders, etc. However, most of them are only 

effective in reducing or eliminating one type of crack except for debonding of strands (Table 

5-1). Debonding seems to be the best methods to restrain all types of cracks according to 

previous research of Okumus (1) based on finite element analysis.  

With that understanding, the effectiveness of  debonding was tested on an  actual 72W 

girder. An AASHTO rule is that only 25% of total strands can be debonded. The columns of 

strands close to the mid-section were left bonded at the ends. To evaluate just the effect of 

debonding, all other properties of a normal bonded girder and an unbonded 72W girder were 

kept the same except the number of strands bonded at the ends. 
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Table 5-2 shows the expected concrete stresses at bottom and top fibers for various 

distances from the ends of the girders. Those results were compared with allowable stress 

limits of concrete in compression and tension which were calculated as 0.6*fCİ for 

compression and -0.24*( fCİ)^0.5 for tension according to AASHTO. In calculations, elastic 

losses were included because they occur right after de-tensioning. Also, the stresses are a 

combination of stresses due to pre-tensioning and due to self-weight of girders assuming that 

the girders immediately camber upward at mid-span. Figure 5-3 and Figure 5-4 show these 

values plotted. All the concrete stresses at various locations satisfy the allowed AASHTO 

limits.  

The effect of de-bonding on reducing concrete stresses close to the anchorage zone 

can be seen by looking at the maximum compression stresses in Table 5-2. Maximum 

concrete stress occurred 3ft. from the ends in the bonded girder. On the other hand, the 

maximum concrete stress was located at mid-span in the de-bonded girder because a 

staggered de-bonding pattern distributed pre-stressing force over a larger transfer length 

compared to applying all the pre-stressing over a short transfer length as in the case in of the 

bonded girder.   
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Type:  
distance

-ft.: 
0 3 6 9 12 15 30 60 77.38 

All. 

Stress 

Limit 

Bonded 

Bottom 

Stress 
0 4.066 3.993 3.925 3.862 3.805 3.602 3.605 3.857 4.685 

Top 

Stress 
0 0.006 0.085 0.157 0.224 0.284 0.501 0.497 0.229 

-

0.265 

25% 

debond 

Bottom 

Stress 
0 3.024 2.935 3.307 3.667 3.595 3.730 3.585 3.751 4.209 

Top 

Stress 
0 0.033 0.127 0.092 0.070 0.146 0.365 0.519 0.342 

-

0.251 

Table 5-2. Concrete stresses (ksi) in both bonded and de-bonded girders. 

 

Figure 5-3. Concrete stress vs Distance from Ends for Bonded Girder. 
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Figure 5-4. Concrete stress vs Distance from Ends for De-bonded Girder. 

The debonding is achieved by just placing plastic sheathing around strands as in  

Figure 5-5. Even though this type of debonding is assumed to debond the strand from the 

concrete, there may be some transfer due friction but it is small compared to the force 

transferred by bonding, therefore, this was ignored. 
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5.3 Test Data & Discussion 

 Data that will be represented below for all gauges was collected during stress release 

of the tendons. Just after erection on the bridge, one more reading from the vibrating wire 

gauges was taken. Unfortunately, the wires of the strain gauges were burned during cutting of 

the strand stubs so a final erection reading of strains in reinforcing bars could not be 

observed.  

5.3.1 Gauges on Strands 

The foil gauges were 1 mm (0.04 in) in length FLA-1-11-5LT type, glue on gauges (27). 

They were put exactly at the same location in both girders (please refer to Figure 5-9 for the 

locations of gauges). The purpose of these gauges is to estimate the transfer length of strands 

having no shielding at the end zone, and to use this information in modelling of girders in the 

Abaqus software program. No gauges were placed on one of the debonded strands because 

the plastic used for shielding was extending well into the girder (a minimum of 54 in from 

end). The final strand strain results, after all strands were cut, are shown below in Figure 

5-11 and Figure 5-12 for both bonded and 25% de-bonded girders and are also listed in Table 

5-3. 
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Figure 5-11. Strand test data for bonded girders. 

 

Figure 5-12. Strand test data for de-bonded girders. 
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Strain Change in Strand on Release 

(Micro inches, - = comp.) 

 at 8 inches at 20 inches at 36 inches 

Bonded Girder -3605 -1208 -1051 

25% Debonded -3611 -916 -811 

Table 5-3. Strain Changes at Designated Strain Gauge Locations  

The strain-distance diagrams in Figure 5-11 and Figure 5-12 are not linear but curve so 

the uniform bond stress assumption of the AASHTO LRFD Bridge Specification along the 

transfer length does not actually occur in this case. The strain change appears to reach a 

constant value after approximately 20 to 25 inches – which may be an effective transfer 

length. This length, however, should be shortened by 4in. to account for the lack of bond 

where protective coatings were placed over the gauges. To model the bond stress in the finite 

element analysis model, the strain diagrams were predicted to have a piece wise linear shape 

with a constant (but different) bond stress in between the gauge location with segments as 

shown in Figure 5-13 and Figure 5-14. 
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Figure 5-13. Bond Stress vs distance from ends of bonded girders. 

 

Figure 5-14. Bond Stress vs distance from ends of debonded girders. 

The stress change between 20in. and 36in. from the end is small (23 psi for bonded and 

32 psi for de-bonded girder), meaning that the transfer length could be assumed to be 20in. 

whereas the 36in. transfer length proposed by AASHTO was used in the analytical girder 

models.  
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5.3.2 Strains in Reinforcing Bars 

Strains were continuously measured during de-tensioning. To interpret the results 

between girders, the strain data is divided into three categories, and labelled as “strain change 

of reinforcing bars in horizontal crack region, 20” up from bottom (gauges S1,S2,S3,S4, S5 

and S6)”; “strain change of reinforcing bars in inclined crack region, near top (gauges S7, S8 

and S9)”; and “strain change of reinforcing bars in Y crack region: bottom flange stirrup bars 

(gauges S10, S11, S12 and S13)” (Please refer to Figure 5-8 to see the details of locations). 

 This strain data was partially collected to confirm the accuracy of an analytical model in 

Abaqus software. After the model is complete, this data and data from the model will be 

compared. Also in all of the rebar plots, a strain of 690 µε corresponding to the 20 ksi limit 

on splitting zone reinforcement of AASHTO LRFD BDS 5.10.10.1 for crack control, is also 

shown. 

5.3.2.1 Strain Change of Reinforcing Bars in Horizontal Crack Region 

The data plots are below in Figure 5-15 and Figure 5-16. The aim of these gauges is 

to capture high strains that would indicate formation of the horizontal crack right at the 

junction between the web and bottom flange (S2, S3, S4, S5 and S6), and along the web (S1). 

Therefore, the gauges showing large tensile micro strains probably are in the location of 

cracks. Strains in reinforcing bars exceeded the AASHTO limit, even though the splitting 

reinforcement was designed to meet AASHTO. 

 In the plots, the effect of de-bonding can be seen. In bonded girders, all the tension 

strain values are approximately 200 micro strain larger than in the de-bonded girder because  



 

Figur

Fig

R
b

t
i

re 5-15. Bon
m

gure 5-16.  D
regio

-50

150

350

550

750

950
R

eb
ar

 s
tr

ai
n

, µ
ε εste

-50

150

350

550

750

950

R
eb

ar
 s

tr
ai

n
, µ
ε

nded girder: 
most are 20” 

(Te

Debonded gir
on, most are 

 (T

time 

eel at 20 ksi

tim

εsteel at 20 

Strain chang
up from bot

ension positi

rder: Strain 
20” up from

Tension posit

during dete

me during d

ksi

ge of reinforc
ttom (gauges

ive, compres
 

change of re
m bottom (ga

tive, compres
 

ensioning

detensioning

cing bars in 
s, S2, S3, S4

ssion negativ

einforcing ba
auges S2, S3

ssion negati

S1 w
S2 w
S3 w
S4 w
S5 w

g

horizontal w
4, S5 and S6)

ve) 

ars in horizo
, S4, S5 and

ive) 

without debon
without debon
without debon
without debon
without debon

S1 with deb
S2 with deb
S3 with deb
S4 with deb
S5 with deb

 

web crack re
).  

ontal web cra
d S6). 

nding
nding
nding
nding
nding

bonding
bonding
bonding
bonding
bonding

75 

egion, 

 

ack 



76 
 
de-bonding increases the transfer length, reducing the compressive and tensile strains in the 

concrete. Only the strain in S3, the one around the web cracking region, increased with de-

bonding but it is not in a critical region.  

The strains in the vertical web splitting reinforcement are maximum for the bar 

closest to the girder end, and rapidly decrease for bars away from the girder end. It is 

questionable whether more than the first two to four bars are providing any advantage. 

Moreover the outer bar, with gages S1 and S2, in the bonded girder seems to just exceed the 

20ksi limit even though it was designed to meet the AASHTO splitting reinforcement limit. 

On the other hand, the limit was satisfied in the de-bonded girder. 

5.3.2.2 Strain Change of Reinforcing Bars in Inclined Crack Region 

These gauges were placed very close to the draped strands hoping to cross the inclined 

cracks. All the values in Figures 5-17&18, however, are less than 60 µε. Therefore, it seems 

that the locations of the cracks were mis-predicted. In the de-bonded girders, the data showed 

that all gauges are primarily in compression so de-bonding prevented this region from 

cracking. On the other hand, data from the bonded girder shows that both tension and 

compression strains were present. Tensile strains may have caused cracks around that region. 

Note that the strain gauge S9 in the bonded girder must have been damaged during casting of 

concrete with subsequent poor operation and the data is omitted in Figure 5-17. 
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along the horizontal axis for times when draped strands, top row strands, middle row strands, 

and bottom row strands were flame cut. The intention is to show the trends in strain change 

as de-tensioning occurs. Unfortunately, the exact times that the various strands were flame 

cut could not be measured because observers were not allowed to get close to the formwork 

during strand release. 

 
Figure 5-21. Strain change of vibrating wire gauges near the web and inclined cracking 

region. (Tension positive, compression negative) 

 

Figure 5-22. Strain change of vibrating wire gauges near the Y cracking region. (Tension 

positive, compression negative, V5 is vertical) 
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The web cracking region strains in the concrete (VW1) were decreased by 54% with de-

bonding but strains in bonded and de-bonded girders are both still above the cracking limit of 

the concrete. The strains in the inclined cracking region (VW4) are small because of an error 

in prediction of the gage location, i.e., not aligning with the inclined crack location. 

The vertical VW5 in the de-bonded girder bottom flange did not work so its value was 

omitted in Figure 5-22. VW2 and VW3 were horizontal and parallel to the flange width. The 

strains of VW2, were low and similar in both girders. On the other hand, the bonded beam 

had strains nearly 21 times as high as the de-bonded beam in the transverse horizontal VW3 

(third stirrup) location. This high strain must be associated with the more concentrated 

transfer of strand stress to the concrete over a short length in the bonded beam and likely 

cracking. Having high concrete strains further inside of the girder (VW3) than strains near 

the end (VW2) might indicate that any Y cracks are initiated internally and then possibly 

grow toward the beam end.  

After the girders were transported to the construction site and put into the planned bridge 

span location, another measurement of the VW gauges was taken.  

Table 5-4 shows strains observed from the vibrating wire gauges in the de-bonded or 

bonded girders after all strands were released and after erection. Web cracking strain in the 

bonded girder (VW1) stayed the same between the de-tensioning and erection. Web strains 

strain in the de-bonded girder increased by approximately 300με or 66% between those 

times.  
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bonded girder. Therefore, it can be said that compared to the bonded girder, the de-bonded 

girder concrete experienced less tensile strain, resulting in smaller crack widths at the end.  
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DEBONDED  

Micro Strains in Vibrating Wire Gauges 

VW1 VW2 VW3 VW4 

After all strands 
released 

454 329 37 26 

At Erection 755 618 n.a. 58 

 

BONDED  

Micro Strains in Vibrating Wire Gaugesx10^-6 

VW 1 VW 2 VW 3 VW 4 VW 5 

After all strands 
released 

974 185 1070 60 152 

At Erection 952 464 1582 407 201 

 

Table 5-4. Data from vibrating wire gauges in debonded and bonded girders. 

 

Figure 5-24 shows a side view of the general location of vibrating wire gauges in 

each girder. This indicates how close the gauges were placed to crack regions. Figure 5-24 

shows that the VW1, VW2, and VW3 gauges in the bonded girder either crossed or were 

near to cracks; and VW1 and VW2 in the de-bonded girder were close to cracks. The results 

in Table 5-4 also seem to agree in some cases with these observations. 
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Figure 5-26. Number of visible cracks found in each girder. 

 

Figure 5-27. Average & maximum crack widths. 
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Figure 5-28. Total length of cracks at girder ends. 

The number of inclined and Y-cracks seems to be same for the girders according to 

Figure 5-26, but more horizontal cracks did develop in the bonded girder.  

In the bonded girder, Figure 5-27 shows that both average and maximum widths are 

larger than in the de-bonded girder. Of most importance, the maximum crack width in the 

bonded girder is large (0.0197 in) and may allow moisture or corrosives to enter the concrete. 

De-bonding 25% of the strands reduced the maximum crack width of the Y cracks by more 

than half. The wide Y crack was observed in the bonded girder in the region where bottom 

strands are concentrated so it may easily lead the aggressive salt water to strands and induce 

corrosion. These cracks were measured right after the girders were carried to the yard. 

Analytic predictions show that the Y cracks are expected to grow as additional vertical loads 

are applied.  
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 Another visual indicator observed just after testing is the length of cracks. These 

lengths were measured at one end of the girders. It is clear in Figure 5-28 that the bonded 

girder may have a higher potential to expose strands to corrosion by cracking than the de-

bonded girder. The total length of cracking was reduced 25% by de-bonding 25% of the total 

number of strands. However, it should be noted that length of each type of cracks decreased 

significantly in the de-bonded girder, especially in inclined and Y- cracks in regions where 

most of the strands are located, so the risk of strands getting corroded decreased. 

 

5.5 Comparison with Finite Element Model Results 

The Abaqus software program was used to analytically model the girders that had been 

monitored during de-tensioning.  The properties of the models were definmed following the 

same procedure as described in Chapter 0 but some changes were made according to each 

girder’s uniques condition - such as concrete strength, to better simulate the test girder 

conditions. The transfer length of the strands in all girders was assumed as the AASHTO 

suggested value of 36in. which varied some from strain gauge data from strands.  

Observers were not allowed to get close to the girder during de-tensioning. Therefore, the 

exact time at which all draped strands, the top strand layer, second layer and third layer were 

flame cut, could not be recorded. The final strains when all the strands were cut was well 

known. Hence, only the strains after the last detensioning step will be compared with finite 

element model results. 
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5.5.1 Bonded Girder 

The initial concrete strength of the bonded girder was observed to be 7800 psi from 

cylinder tests before de-tensioning of strands. This value was used to calculate a cracking and 

strain using the AASHTO tension stress equation based on compressive strength, which 

suggested a limit of 126με. This limit is used to judge likely cracking in both test girders and 

models. Reinforcing bar strains were compared with 690με corresponding to the 20 ksi limit 

on splitting zone reinforcement of AASHTO LRFD BDS (3) Section 5.10.10.1.  

 Figure 5-29 shows the comparison of regions where girder end cracks are likely, 

predicted by the Abaqus model, with the actual cracks at the bonded girder end. To spotlight 

expected crack locations in the model results, the maximum strain would be greater than the 

cracking strain value of the concrete or -1.26*10-4(light blue to gray shaded regions). The 

model envisaged the location of cracks quite well except for the location of an inclined crack. 

A gray color indicates locations where wide cracks are expected. The light blue to red would 

be regions with narrower cracks. 

5.5.1.1 Comparison of Vibrating Wire Gauge Results with Finite Element Models 

Vibrating wire gauges measure the average concrete strain over the full gage length. 

Therefore, to compare vibrating wire gauge results with the finite element model strains - an 

averaging of the finite element strains near the caps of the gages was used. Figure 5-30 is a 

comparison between test data strains and predictions from the finite element model. The 

strains are in micro strain and graphs were plotted with the strain vertically, and VW gauge 

number horizontally. A detailed location of each vibrating wire gauge is in Figure 5-10.  
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Concrete is a heterogeneous material, nonetheless, the concrete of the FEM models is 

taken as a uniform homogenous material. In other words, there are many factors affecting the 

comparison. Basic factors include: a distribution of aggregates throughout the body that is 

unknown but its effect is inevitable as there will be discontinuities in material properties, the 

concrete strength likely vaies over the 72in. depth of the girder,  the assumed relationship 

between cracking stress and compression strength is approximate. Discontinuities can result 

in discrete cracks – which are not exactly simulated in the model. If a local discrete crack 

occurs across a gage, but it is not simulated at that location by analysis the indicated strains 

could differ significantly. Therefore, the accuracy of a correlation, as in Figure 5-30, might 

be considered quite good, especially with the small strains that are present. 

Even though matching measured concrete strain with finite element model results is 

challenging, the comparison for the VW1, VW3 and VW4 gauges in Figure 5-30 is quite 

good. The comparison of the other gauges (VW2 and VW5) is not as good, but is acceptable. 

The reason for the disagreement in the VW2 comparison is that the VW2 gauge in the 

bonded girder did not physically cross a Y crack, i.e., the crack did not pass through VW2 in 

bonded girder as in Figure 5-23. In the model, however, there should be a Y crack in the 

location where the gauge was embedded. Because the VW 5 gauge was actually attached to a 

reinforcing bar, it may have been restrained from accurately measuring concrete strain during 

the test.  

Another observation is that as in Figure 5-24; VW1, VW2, and VW3 were either near 

to or crossed cracks. In the comparison, strains from both the model and test data results are 

over the assumed cracking limit for the concrete holding those gauges. As such, the 



93 
 
prediction was quite accurate. The model also predicted that at the location of VW5 cracking 

should have just started. Test data showed that the average strain there was at the cracking 

limit of concrete and an actual crack may not yet have occurred.  

Table 5-4 lists the last strain measurements taken after erection. According to those 

values the strains around the VW5 gauge had nearly reached the FEA predicted result. 

Perhaps crack formation in the concrete develops slowly time wise, but is immediate in the 

FEM analysis, and it can be said that the model would fit better if actual data were taken a 

couple of days after de-tensioning to allow that crack growth to occur.  

5.5.1.2 Comparison of Strain Gauge Results with Finite Element Model 

Reinforcing bars are more homogeneous than concrete. Hence, the correlation 

between measured and predicted strains should be closer than in concrete. 

Figure 5-31 compares predicted and measured reinforcing bar strains in the bonded 

girder. The vertical axis is for strain and the horizontal axis is the gauge number where strain 

was measured. The gauge placements were shown in Figure 5-8.  Even though the girder was 

designed with rebar not to exceed the 20 ksi AASHTO limit, the gauges on certain re-bars 

(S1, S2, and S10) showed strains over this limit.  
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Figure 5-31. Reinforcing bar strain comparison for bonded girder. 

(positive is tension) 
 

 The strain difference at S1 and S10 is large, but for the other gauges the correlation is 

quite good. The reason for this mismatch with the two bars is likely due to a crack occurring 

near the location of the strain gauge and creating a high local strain in the bar. In the FEM 

model the bars were discretely connected to the concrete elements, rather than with 

continuous bond, and the strain associated with a crack is averaged over the element length.  

5.5.2 25% De-bonded Girder With Strands Bonded in Staggered Lengths 

The initial concrete strength for this girder with 25% debonding was 7015 psi from 

cylinder tests before de-tensioning of strands. The cracking strain of the concrete is 

calculated as 128με. The concrete strains from both test and model were compared with this 

cracking limit. Again, reinforcing bar strains were compared with 690με corresponding to the 

20 ksi limit on splitting zone reinforcement of AASHTO LRFD BDS (3) Section 5.10.10.1. 
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5.5.2.1 Comparison of Vibrating Wire Gauge Results with Finite Element Models 

Figure 5-33 shows the comparisons between measured and predicted concrete strains. 

The strains are in micro strain and the graph was plotted with concrete strains vertically and 

VW gauge number horizontally. The results from VW3 and VW5 were omitted because their 

results were questionable due to intermittent operation during the test.  

 

Figure 5-33. Concrete strain comparison for de-bonded girder. 

FEA results and test data results almost matched and there is a good correlation. 

These are strain change results after all the strands were cut. The analytic model can be 

judged to be working well. 
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In Figure 5-24, VW1, and VW2 passed through cracks. Therefore, strains from both 

predicted and measured results are over the cracking limit. The prediction of crack locations 

was quite accurate. 

5.5.2.2 Comparison of Strain Gauge Results with Finite Element Models 

Figure 5-34 compares reinforcing bar strains in the 25% de-bonded girder. The 

vertical axis is for strain change and the horizontal axis is for strain gauge number (as shown 

in Figure 5-8). All the strain values, both from the predicted model and measured data, were 

below the 20 ksi AASHTO limit. 

In the comparison, the measured strains near the gauges matched with finite element 

results except for the one gauge on the first vertical web bar: S1. There is a large difference 

between the strains shown. The reason is again attributed to the formation of a crack within 

1in. of the S1 gauge location causing a high local strain, while the FEM model provides what 

is more like an average strain due to discrete bonding of the steel and concrete. Overall the 

FEM model is judged to be quite accurate in strain predictions. 
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Figure 5-34. Reinforcing bar strain comparison for de-bonded girder. 

5.6 Observations and Summary 

Reinforcement bar strains were compared with the strain limit according to the 

AASHTO LRFD BDS 5.10.10.1 requirement intended to control cracking. Although the 

reinforcements of the girders were designed not to exceed a 20 ksi stress limit (or 690με 

strain) per AASHTO, the gauge stresses (or strains) of the first vertical web reinforcing bars 

in the girder without de-bonding (S1, S2, and S10) exceeded this limit. The stresses turned 

out to be as high as 28 ksi in web reinforcement and 45 ksi for confinement reinforcement in 

the girder without de-bonding. On the other hand, 25% strand de-bonding brought 

reinforcing bar stresses below the AASHTO limit for crack control.  

In the inclined crack zone, strains both in reinforcing bars and in concrete were very 

small because the gauges missed the actual inclined crack position. 
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Concrete strains in the vibrating wire (VW1) gauge in the horizontal web cracking 

region showed that 25% de-bonding decreased tensile strains in concrete by 54%, but it did 

not prevent cracking as strains were still not below the cracking limit. Full elimination of 

cracking would likely require more debonding than 25%.  

Gauges on bottom flange confinement reinforcing bars in the Y cracking region showed 

the beneficial effect of de-bonding. The single bar at the very end of the girder crossing the Y 

crack (S10) had very high strains in the girder without de-bonding, and therefore it is partly 

effective for restraining the Y cracks. It is expected that it would be more effective if it was 

not epoxy coated because better bond would reduce crack widths further. The strains in this 

rebar were reduced to 10% of the bonded amount  with de-bonding, but a narrower Y crack 

still occurred in the girder with de-bonding. The strain at the bottom flange first stirrup 

(VW2) location showed little difference between the two girders. At the third stirrup (VW3) 

location, however, the bonded beam had strains nearly 21 times as high as the de-bonded 

beam had. This difference suggests that the Y crack crossed the gauge in the bonded beam or 

that cracking might initiate 8in. into the girder and then grow towards the girder end.  

The maximum crack width of the Y cracks was reduced with de-bonding 25% of the 

strands by more than 50% compared to the bonded beam, and decreased the total length of 

cracks by 25%. Therefore, de-bonding has the potential to eliminate cracks, particularly if 

more than 25% of the strands can be de-bonded.  

In a comparison of strain results from vibrating wire gauges, three out of five gauges 

agreed quite well with test results in the bonded girder. VW2 and VW5 did not match with 
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measured strains. The reasons may be due to effects of local cracking and attachment of 

gauges to rebar – effectively restraining the deformation of the gauge. In the 25% de-bonded 

girder, however, there is a good correlation between measured and predicted results for 

working gauges. Also, the models predicted the location of cracks accurately.  

As the strain gauges were put on uniform material (re-bars), the results of a measured and 

predicted comparison are better than in concrete. The comparison of the strain gauge on the 

first web bar (S1) both in the bonded and in de-bonded girder did not match the predicted 

value because of cracks that occurred approximately 1in. below the location of the gauges. 

The gauges missed the crack, but the analytic model caught it.  

 

5.7 Conclusion 

25% de-bonding of the strands with staggered debond lengths decreased strains in 

reinforcing bars and concrete considerably by increasing the transfer length of pre-stressing 

force at the girder end and by decreasing the number of draped strands needed. A higher 

amount of de-bonding, however, is needed to prevent Y cracking completely. The change in 

the number of draped strands does not impact Y cracking strains as Y cracks are caused by 

the eccentric distribution of bottom flange strands in the direction of the width of the girder 

and the vertical reaction force of the girder self-weight.  

The number of cracks stayed the same with 25% de-bonding but widths and length of the 

cracks decreased compared to the bonded girder. De-bonding decreased the tension strains in 
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concrete and in reinforcing bars. A higher percentage of debonded strands, however, is 

required to completely eliminate Y cracking. 
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6 TEST AND FEM MODELS FOR 54W GIRDERS 

 

Previously, strains in two 72W girders manufactured by Spancrete, Inc. were measured 

during and after detensioning. One of these girders had 25% of the prestress strands 

debonded following the rules statedint Section 5.11.4.3 of the AASHTO LRFD Bridge 

Specification.  

From the tests and analyses of 72W girders, it was apparent that 25% strand debonding 

did not eliminate the horizontal and Y cracks at the girder end. Therefore, two different 

debonding patterns were tried on 54W girders at County Materials Corporation in October 

2015.  Strains were again measured during detensioning and compared with analytically 

predicted strains. 

 

6.1 54W Girders Fabricated by County Materials Corporation 

6.1.1 Properties of 54W Girders 

Three 54W girders were built and monitored to evaluate end crack control as a portion of 

the 18 girders used in building bridge B-05-0682. Plans for the girders #4, 5 and 6, part of the 

second bridge span, are in the Highway Structures Information System (14). The girders 

were 54in. in depth with 48in. wide top flanges. All the standard WisDOT end details, except 

the strands of the girders, are shown in the Figure 6-1.  
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6-5 show the plots of these values. All the concrete stresses at various locations are below the 

allowed AASHTO limits. 

Girder 

Type 
Distance‐ft.:  0  3  6  9  12  15  62.5 

All. 

Stress 

Limits 

Bonded 

Bottom 

Stress 
0  1.900  3.770  3.708  3.654  3.607  3.845  4.692 

Top Stress  0  0.612 0.252 0.317 0.374 0.423  0.172  ‐0.265

38% 

debond 

Bottom 

Stress 
0  1.900  2.592  3.252  3.654  3.607  3.845  4.884 

Top Stress  0  0.612 0.487 0.395 0.374 0.423  0.172  ‐0.271

8in. 

debond 

Bottom 

Stress 
0  0.748  3.770  3.708  3.654  3.607  3.845  4.785 

Top Stress  0  0.821 0.252 0.317 0.374 0.423  0.172  ‐0.268

 

Table 6‐1. Concrete stresses (ksi) at bottom and top fibers of the corresponding girders. 

 

Figure 6-3. Bottom and top concrete stresses in bonded girder. 
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Figure 6-4. Bottom and top concrete stresses in 38% de-bonded girder. 

 

Figure 6-5. Bottom and top concrete stresses in 8in. de-bonded girder. 
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occurred due to relative slip between the strand and the concrete that effectively scraped the 

gauge off or ripped the lead wire off the gauge. Therefore, the transfer length could only be 

estimated from the unbroken strain gauge data. The last strain results, after all strands were 

cut, are shown in Figure 6-13 for the girder with 38% debonding.  Data from all three girders 

is listed in Table 6-2. Note that the location of the gauges were shifted by 8in. because the 

strand was debonded. from the end for the 8in. debonded girder design. Therefore, the results 

for this girder in Table 6-2 were given after the strand started to bond. 

Strain Change in Strand on Release 

(Microstrain -,  negative = comp.) 

 at 8 inches at 20 inches at 36 inches 

Bonded Girder n.a. -2469 -770 

38% Debonded -4057 -2288 -419 

8 inch Debonded n.a. -2188 -758 

  Table 6-2.  Strain changes at locations along strand upon release.  

 

Figure 6-13. The Change in strain at locations along strand of 38% debonded beam. 
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The change in strain of the gauges at 36in. from end is small (419 to 770 ) meaning 

that the transfer length probably ended near to 36in. from the girder end. Some change in 

strain will occur even at the end of the transfer length due to the elastic shortening of the 

beam. With just under 12% prestress loss due elastic shortening the shortening strain would 

be near 800 micro strain, very close to the remaining strain at 36in. shown in Table 6-2. 

Based on the strain measurements it appears that the transfer length was 36in., minus the two 

regions were gages were placed and no bonding occurred, or 36-4=32 inches.  A length of 36 

inches, as suggested by AASHTO, was used in the analytical girder models.  

The strain curve of Figure 6-13  is not linear so the uniform bond stress assumption of the 

AASHTO LRFD Bridge Specification along the transfer length did not actually occur here. 

Though nonlinear, the variation is not as great as reported by Arab et. al. (9) where the bond 

stress was assumed to vary in a parabolic fashion and a transfer length of 34 inches was 

apparent. To model the actual bond stress accurately in an analytical model the strain 

diagram along the length, of Figure 6-13, was assumed to have a piece wise linear shape with 

a constant (but different) bond stress in each of the segments. The slope in Figure 6-13 is 

highest near the end of the strand, implying a high bond stress, and becomes lower further in.  

For the analytical model, the bond stresses between strand and concrete were assumed to be 

constant with different values along the length as shown in Figure 6-14. 
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Figure 6-14. Bond Stress Variation Used in the Analytical Models. 

Strain Gauge Results On Reinforcing Bars: As mentioned before, three strain gauges 

were mounted on web bars and two strain gauges were put on bottom stirrups.  

The result of strain gauges on web bars: Two of the web bar strain gauges in the 38% 

debonded girder, namely S1 and S3, were damaged during casting. This likely occurred with 

the lead wire being ripped off the gauge as the concrete fell into the form or as the vibrator 

passed by the gauge during consolidation. Therefore, the results of those gauges are omitted. 

Figure 6-15 through Figure 6-17 show strain gauge data obtained from the tests. The gauge 

locations can be seen from Figure 6-10. 
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debonded had 21 micro strain and the 8in. debonded showed 19 micro strain. These bars are 

very short and epoxy coated.  The small strains indicate that they are ineffective, particularly 

since they are in a region where the Y crack is expected to occur. Visual observations 

showed that there were Y cracks in this vicinity. The lack of strain in the bars, likely due to 

poor bonding with the epoxy coating, suggests that these bars should either be eliminated in 

the design or used without epoxy coating to improve their bond. 

 The S5 gauges were on the bottom of the flange stirrup leg, at approximately 26in. 

from the end of the girder.  The strains in these bars would indicate that they are effective 

and represent the degree of bursting strain developing in the girders.  The bursting stress is 

caused by the transfer of force from the strands to the concrete.  It would be expected that the 

girder with 38% debonding, staggered at locations 3ft, 6ft, and 9ft into the beam, would show 

little bursting strains because few strands are transferring force at any particular location. The 

transfer occurs gradually over the first 12ft of the girder.  The measured strain results agree 

with the expected behavior.  The S5 gauge in the bonded girder reached 200 micro strain in 

tension, only 94 micro strain occurred in the 38% girder, but 208 micro strain developed in 

the 8in. debonded girder. There was virtually no strain difference between the bonded girder 

and the 8in. debonded girder because all strands were transferring force to the concrete in the 

same region.  

 Strain Results from Vibrating Wire Gauges:   Average strain changes in the concrete 

were measured at 4 different locations in the girders during detensioning. As described 

earlier, the gauges were placed across regions where high tension strains were predicted by a 

preliminary analytical model, and thus locations where cracks might occur.  It was 
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anticipated that any development of concrete cracks across one of the gauges would be 

signaled by an abrupt large increase in strain measured by the gauge. 

 The cracking limit of the concrete was estimated using rupture equations from the 

AASHTO LRFD Bridge Design Specifications. AASHTO uses 1820*(sqrt fc’) as the elastic 

modulus and 0.23*(sqrt fc’) as the rupture strength. The cracking strain is obtained by 

dividing cracking strength by elastic modulus, and is approximately 126 micro strain by 

averaging all girders tested. 

 The debonded girders and bonded girder were detensioned on different days and at 

slightly different rates. Therefore, there is a difference in the data point numbers versus the 

strands being cut shown along the time axis (x-axis) in Figure 6-21 through Figure 6-24. The 

main information, however, to be gleaned from the data is the peak strains measured. The 

figures show the results of all the vibrating wire gauges and the details of the gauge locations 

were given in Figure 6-12.  Note that results for all gauge locations are not always visible 

because some of the gauges became damaged during the concrete placement and did not 

subsequently work. 
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web and at the location where the predicted web tension strains were the highest. The gauge 

in the 8in. debonded beam did not work.  The results for both the normal girder and the 38% 

debonded seem to indicate that cracking did occur, probably after the strands of the middle 

bottom row were released. The average strain over the 6in. gauge length reached 166 micro 

strain in the normal girder and 134 micro strain in the 38% debonded girder. The predicted 

cracking strain was 122 micro strain.  It is unfortunate that the VW1 gauge of the 8in. 

debonded girder was broken.  From the measured strains horizontal cracking of the web 

might be expected in both girders. 

 The VW2 gauges were placed horizontally at the top of the bottom flange and 8in. 

from the end of the girder – where a Y crack might occur. The gauge was inoperable in the 

38% staggered debonded girder. Strains in the normal girder jumped after the middle bottom 

row of strand was detensioned and indicated likelihood of a Y crack having developed with 

an average peak of 1050 micro strain. The girder with 8in. debonding only developed 45 

micro strain at the same location, which is below the cracking limit. Therefore, the 8in. 

debonding showed a 96% decrease in tension strain compared to the normal girder.  

 Luckily all three inclined vibrating wire gauges in the bottom flange worked at the 

location of VW3, approximately 14in. in from the girder end, so that the effect of debonding 

patterns could be compared. The resulting strains in all three beams were low and indicating 

that Y cracking was unlikely this far into the beam. The normal girder showed an average of 

68 micro strain over the 2in. gage length, the 38% debonded reached 32 micro strain and the 

8in. debonded developed 46 micro strain. Debonding did provide a small decrease in strains: 

53% in staggered pattern and 32% in the 8in. debonded girder.  
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 Further into the girder, in the VW4 location approximately 26in. from the end, the 

gauge in the bonded girder was inoperable. Therefore, only a comparison of the two 

debonded girders can be made. Both the strains in the debonded girders are below the 

cracking limit, however, so Y cracking was not expected at this location in either girder. The 

peak strain value of the 8in. debonded girder is 108 micro strain whereas it is 65 micro strain 

for the staggered debonded girder.  

 

6.2 Cracks in Girders 

  Concrete is a heterogeneous mixture of an aggregate, sand, cement and water. 

However, the distribution of these components are not even throughout the body depending 

on many factors like casting position of concrete member, vibration, etc. so locating cracks 

by modelling concrete bodies is a challenging job. As mentioned before, the location of all 

gauges were positioned inside the concrete according where high strains were predicted by 

Abaqus models with nonlinear material properties. Figure 6-25 shows the general location of 

vibrating wire gauges in each girder. This is made to see how close the gauges were placed to 

the visible cracks. 

It seems that except for the vibrating wire gauge labelled as VW1, cracks did not 

cross the other vibrating wire gauges. The VW 1 gages were very near to, or possibly 

crossing a crack. 
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Right after de-tensioning, it was observed that Y cracks in the instrumented ends did 

not develop or show a vertical leg through the bottom flange as in Figure 6-26. While the 8 

inch debonded beam showed the start of top legs of a Y crack, the VW2 gage was parallel to 

the cracks and would not provide any measurement. The VW3&4 gages might have crossed 

the cracks if the cracks extended far enough in from the end of the girder.  

Surprisingly, a severe Y crack did not occur in the bonded girder as predicted 

analytically. There may be a partial explanation for this. Workers at the plant put two 

uncoated  #4- 30”x36” U bars beneath the top row of strands and above the bottom row 

strands as in Figure 6-27 even though this was not in the standard WisDOT plans. The  U 

bars likely resisted some of the flange tension stresses and reduced the Y crack formation or 

reduced the crack width so it was not visible. However, further study might be needed to 

conclude that this is an effective method to prevent Y cracks at the bottom flange. 



 

Fig

 

the to

length

wise 

There

and in

gure 6-27. U 

One of th

otal length of

hs of the ins

comparison 

efore, a bigg

nclined crac

  

Instrumen

Other E

Tota

Table 6-3

bars beneath
sid

e good meas

f cracks at th

strumented e

is preferred

ger percentag

ks.  

ted End 

End 

al 

3.  Total end

h the top row
de view (top)
sures to com

he ends of gi

end, the other

d because Y c

ge of total le

Bonded 

132 

194 

326 

d crack length

w of strands
) and in top v

mpare effectiv

irders. Below

r end, and to

crack length

ngths of cra

38% De-bond

42 

14 

56 

hs of each g

and above th
view (bottom
veness of the

w, in Table 6

otal of these 

hs in each gir

cks are in a 

ded D

irder. All me

 

he bottom ro
m). 
e debonding

6-3 and Figu

two ends are

rder are fairl

combination

De-bonded 8in. 

174 

88 

261 

easures are i

ow of strand

g is to compa

ure 6-28, cra

e shown. An

ly small. 

n of horizont

from end 

in inches. 

130 

ds in 

are 

ack 

n end 

tal 



131 
 

 

Figure 6-28. Total crack lengths of girders.  

The bonded girder was cast in a different bed and a different day than the debonded 

girders. The debonded girders were in the same casting bed as in Figure 6-29 and the 

instrumented ends were facing each other in the middle. The “X” in the “top view” of Figure 

6-29 represents the places that the strands were flame cut. There was approximately 4 feet 

between the faces of the girders at the middle.  

In cutting strands the free length, outside of the beam, stores strain energy that is abruptly 

released  when a strand is cut. The longer the free distance, the larger the energy and 

dynamic effect on the girder concrete at the initial bond point.  An end of the girder with a 

long free strand would be expected to be susceptible to more cracking than an end with a 

short free length.  

In the present case the  normal girder was the end girder in the casting bed and our 

instrumentation was placed at the end with hydraulic jacks, rather than at the girder end 

between two girders, that is at the right side of the girders shown in Figure 6-29. 
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the strains were larger than the cracking limit, during end zone observations no Y cracks 

were visible. 

Test and model results at the VW3 location indicate that strains are smaller than the 

expected concrete cracking limit, which means that cracks probably did not extend to that 

location. The agreement between the the model and the data is good until the middle strand 

row in the bottom flange was cut. From there the FEM predicted strains continued to increase 

but the measured strains stayed relatively constant. The behavior of the measured strains 

seems to indicate that there may have been a crack nearby, limiting an increase in stress, but 

strains in adjacent concrete stayed constant. Since the strains were below the cracking limit 

defined for the FEM model the behavior continued as elastic without cracking. It is likely 

that cracking started in the girder at a strain lower than expected by the AASHTO equation 

for cracking stress/strain used in the FEM model. 

6.3.3 Bonded Girder: Strain Results at Strain Gauges 

All strain values in the reinforcing bars were below the AASHTO LRFD limit of 20 ksi, 

which corresponds to 690 με, so the limit was not included in Figures 6-35 to 6-39. Since re-

bars are homogeneous and remain elastic, the correlation between measured and predicted 

strains should be close. The strains in the figures are for gages S1-S3 on the vertical web 

bars, S4 on the bottom flange banana bar and S5 on a bottom stirrup. 
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 All the comparisons of strains at locations S1 to S5 obtained from the FEA model and 

the test data are in good agreement. Therefore, the FEM model seems to predict reinforcing 

bar strains accurately.  

 

6.6 Observations and Summary 

The results from some strain gauges in the instrumented end of the girder with strands 

debonded 8in. from the end gave higher strains than found in the bonded girder end. The 

strain gauge in the first vertical web steel re-bar increased by 182%, and by 35% in the third 

web rebar.  The strain gauge on the fifth web bar was fairly far from the cracking zone and 

therefore the bar strains were small. Debonding the strand for 8in. apparently can be expected 

to increase horizontal web cracking. This is not a serious consequence since the web cracks 

are not near strand and cracks will not likely cause strand corrosion. The web cracks also 

tend to close as additional dead and live load is applied to the girder.  

Since the strain gauges were mounted on more uniform material (re-bars) than concrete, 

the results of a measured and predicted comparison are good.  

The results of a vibrating gauge used to indicate horizontal web crack (VW1) showed 

a decreased of 19% in tensile strain in the 38% debonded girder compared to the fully 

bonded girder. The results from the vibrating wire gauges on the first web bar (VW1), used 

to detect horizontal web cracking, had a good agreement in both bonded and 38% de-bonded 

girders with the analytic predicted strains. The results were over the concrete cracking limit 

because that gauge had apparently crossed one of the horizontal cracks.  
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The S5 strain gauge on a bottom flange tie bar was placed to indicate the degree of 

bursting stresses developing in the girders. 38% debonding with a staggered pattern 

decreased these bursting strains by 53% compared to the bonded girder. The strains at the 

same location were not changed compared to the fully bonded girder when the bottom 

strands were debonded 8 inches.  

Possible cracking of the concrete in the bottom flange was judged by measured 

concrete strains. Though the concrete tensile cracking strain is not well known, a value 

suggested by AASHTO was assumed as a limit to gage possible crack formation. The VW2 

gauge (used to measure possible Y cracks) showed that debonding 8in. from the end 

decreased the horizontal strains across the bottom flange by 96% at the end of the beam 

compared to the fully bonded case. Results from the other two other vibrating wire gauges 

showed that strains were decreased with both debonding patterns, compared to the fully 

bonded case.  

Also, the final value of the strain gauge on the banana bar below the first web bar (S4) 

showed poor correlation with predicted results in the bonded girder. The reason is that this 

re-bar was epoxy coated so there might not be enough bond between concrete and steel.  

 

6.7 Conclusion  
 

  Debonding 38% of the strands in the bottom flange at the girder end of 54W girders 

considerably decreases strains both in reinforcing bars and in the concrete  as compared to a 
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bonded girder. Y cracking can be eliminated with staggered debonding and sufficient strands 

debonded. The staggered debonding also reduced horizontal web cracking. The reason is that 

38% debonding, with staggered debonded strands, gradually transfers the prestress over a 

long distance with less stress concentration.  

Debonding the bottom strands for an 8 inch distance from the girder end is also an 

effective technique for controlling Y cracking. The 8 inch debonding actually increases 

horizontal web cracking slightly compared to a normal girder. This is not a serious effect, 

however, since the horizontal web cracks close under added dead and live loads. Y cracks 

tend to open with added loading and are of prime concern. 

Debonding works well for decreasing the total length of cracks, but the 38% 

debonded girder showed the least cracking.  

The  effect of placing U bars horizontally in the bottom flange, as County Precast did 

in the 54Ws, might be be investigated as an added aid in reducing girder end crack widths. 

Strain data measured from the vertical web reinforcing bars allows a conclusion that 

the first three bars from the end of the girder work to control cracking. The extra two bars 

used in the WisDOT standard designs are ineffective and could be removed. 
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7 CAUSE OF CRACKING &  DESIGN OF GIRDERS 

 

FEA is a very important tool to get full response information for a wide domain of 

differing girders while conventional experiments can only provide information at discrete 

gage locations. The response of many loadings in any direction can easily be examined with 

the FEA models. Examination of strain and stress information from the FEA models may 

also be used to explain the possible cause of cracks at the girder ends.  

The primary explanation for cracking is that high principal tensile strains are crack prone 

locations of the girder. In this chapter the response of concrete and reinforcing steel, due to 

prestress loading at the end of pretensioned girders, will be examined and discussed. For this, 

the strain fields in the bonded 54W girder models will be used since they were in good 

agreement with measured data and the 72W bonded girder gave similar trends.  

In Chapter 0, concrete behavior was defined: “after attaining the tension cracking strain 

limit, concrete elements undergo plastic deformations and cannot carry further loads (cracks 

occurs). In these locations, stresses drop while the strains increase”. For this reason, using 

concrete strains makes sense for a cracking investigation because they grow rapidly once a 

crack forms. The behavior of steel reinforcement bars, however, were modeled as linear 

elastic since no yielding was expected. The effects in the re-bars can be presented as stresses 

or strains. 

The comparison of the finite element model results and test results agreed well, so the 

models are assumed acceptable for use in explaining the behavior of the girder end zone and 
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to examine the required percentage of debonding needed to prevent all cracks. Because of 

variations in fabrication, concrete strength, non-homogeneity, etc., FEA should not be 

anticipated to simulate the behavior of every girder with perfect accuracy. It is, however, 

sufficient to represent the typical girder cracking behavior. After explaining causes of cracks, 

the percentage of strands needed to control cracking will also be discussed in this chapter. 

 

7.1 Concrete Response & Causes of Cracks 

Figure 7-1 shows the maximum principal strains in a fully bonded 54W girder with 42 

strands. The principal strains are shown by various colors and go up to 4500 με (with positive 

strain indicating tension) and light blue indicating possible start of cracking. The red, green 

and yellow colors are for high strains, indicating the locations of cracks. For this girder, a 

cracking strain was calculated as 132 με based on the compression strength of the girder, 

which is 7820 psi. However, 150 με (or 1.50*10-4 strain) was assumed to be an initial 

cracking strain based on the observations between test data and model data. 
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web just above the bottom flange-web junction. Again, the locations of these high web 

strains coincide with the observed locations of horizontal web cracks. 

The last region where high strains are observed is in the bottom flange; near the 

middle of the width of the flange as evident in the cross section view of Figure 7-1. High 

strains seem to initiate near the bottom of the girder, and extend upwards to meet the 

horizontal crack right at the web junction, creating the Y-cracks as observed in the field.  

7.1.1 Cause of Inclined Crack & Horizontal Crack 

Figure 7-1 only shows the maximum principal strain values but it does not give any 

information about the direction of these strains. Figure 7-2 shows the principal tensile strain 

directions to further support the previous discussion. Cracks are likely to form perpendicular 

to the direction of these tensile strains. The strains are indicated by lines with arrows and the 

lengths of these lines indicate the size of strains. 

By looking at Figure 7-2, the inclined cracks probably initiate 2-3 inches in from the 

girder end and near the top of the web where the strain lines are longest in length = high 

strains. Then the cracks extend downward with an inclination while remaining perpendicular 

to the principal tension. Concrete tensile strains predicted in the inclined crack region 

reached 718 με, which is well above the expected concrete cracking limit of the 54W bonded 

girder.  

The inclined cracks are caused by the draped strands in the thin web section. 

Basically, once the stresses in the draped strands transfer to the concrete, the principal 
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slightly angled cracks at that interface. The initial vertical flange crack might turn toward 

both web faces with these second strains that are tangent to the radius of the web-to-flange 

joint. 

  From 18 in. to 36 in. (at the end of transfer length), the tension strain lines tend to 

encircle the strands, indicating a bursting effect. Therefore, the confinement stirrups in this 

region of the flange may be useful. After 36 inches, no particular trend in tension strain 

direction is observed. Tension strains are in random directions and much smaller. So cracks 

should not be anticipated.  

The vertical leg of the Y crack that forms at the girder end may be caused by the 

eccentricity of strand force to each side of the mid flange section. Similar to web cracking, 

the resultant force of strands on each side of the bottom flange, with no force at the center – 

due to the absence of the draped strands, creates a bending effect in the flange section, 

causing the crack. The outsides of the flange are both compressed inward, while the mid-

section is uncompressed and restrained by the stress-free web. Once the vertical crack forms 

at the girder end it tends to meet the lower web cracks, forming a Y crack. Releasing outer 

strand first accentuates this eccentricity and cracking. 

 

7.2 Steel Response 

As described in Chapter 0, the reinforcing bars are modeled as linear elastic truss 

elements in the FEM analysis. Once the nonlinear concrete elements pass the cracking limit, 
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The stresses in bottom flange stirrups are low at the girder end but reach 17 ksi at the 

end of the transfer length because of the bursting effect, as was discussed  with sections 

between 18 and 36in. of Figure 7-3. 

 The largest peak stresses predicted in the 54W and 72W girders are presented in 

Table 7-1. Note that the vertical bar stresses should be limited to 20 ksi for crack control by 

AASHTO LRFD Bridge Design Specifications. The girders, however, exceed these limits by 

10 and 15 percent, respectively. Also, all the maximum stresses are below yield stress of 

steel, which proves that the assumption of modelling the steel elements with a linear elastic 

property is a correct approach. 

Maximum Stresses in Reinforcing Bars - ksi 

54W 72W 

Vertical Web 
Bar 

Bottom Stirrup 

22 10 
 

Vertical Web 
Bar 

Bottom Stirrup 

23 49 

Table 7-1. Maximum stresses observed in 54W and 72W models. 

In conclusion, the FEA model of a 54W bonded girder is used to explain cracking at the 

ends by looking at the distribution and direction of the tensile strains. The inclined cracks 

were thought to be caused by the bursting pressure due to the draped strands. The web cracks 

were due to the eccentricity of the straight and draped strands over the depth. Finally, the Y 

cracks were triggered by the eccentricity of the strands over the width of the girder. 

Debonding is an effective method to control the cracking because it reduces the resultant 

prestressing force coming from strands, lessening the internal concrete tension stresses. 

Debonding strands close to the flange edges at the bottom flange, reducing the eccentricity of 
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the resultant prestress force from the section center, is useful to reduce the tensile strains 

causing the Y cracking.  
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8 RECOMMENDED DEBONDING WITH DIFFERENT 
NUMBERS OF STRANDS IN WISCONSIN 54W AND 72W 

GIRDERS 
 

Debonding reduces the concentration of prestressing force applied to the concrete in 

the girder end region by moving the transfer lengths of some strands further into the girder. 

Since cracking has been shown to be induced by high concentrated concrete prestress force, 

debonding seems to be a logical solution for controlling cracking. 

Finding the necessary number and locations of strands that should be debonded for 

both 54W and 72W girders, with different standard strand contents, required special 

investigations based on debonding length, debonding percentage, strands to debond, the 

prestressing force, material properties, and the length of the girders. These investigations 

involved looking analytically at numerous possible designs for each girder with a particular 

strand content. The best debonding patterns were found by modelling both 54W and 72W 

girders with different numbers of strands. 

What it is meant by best debonding pattern is a design that reduced the concrete tensile 

strains to a value near or below 150 με. The true cracking limit is actually thought to be 

larger than the value calculated from the AASHTO rupture equation (130 με ) and 150 με 

was assumed. Since it is important to control the eccentricity of resultant prestress forces 

across the width of the bottom flange, the inner most strand column was left bonded. The 

AASHTO LRFD BDS does not allow debonding of the outermost strand columns so that 

requirement was also followed.  AASHTO also limits debonding to 25% of the strand, but 
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the commentary in C5.11.4.3 acknowledges that states have had success with greater 

percentages of debonded strands. Texas has used debonding percentages over 50%. No limit 

is placed on the number of unbonded strands in the designs examined here. 

In the analyses, a uniform stress was applied to the concrete over the strand transfer 

length to simulate the strand concrete bond.  The uniform stresses transferred from 

prestressing steel to concrete were calculated from the jacking stresses of strands 

(0.75*fPU=202.5 ksi).  However, since elastic losses were considered, a value which is 

smaller than that was applied to models with elastic loss estimated. Again, to be consistent, 

the concrete strength was taken as 7000 psi, which is slightly larger than the normal WisDOT 

specified value of 6800 psi, - the minimum required concrete strength that should exist 

before strand release. Finally, the assumed girder lengths (used for elastic loss and girder 

weight) were chosen from the WisDOT Bridge Manual (14). The maximum girder lengths 

allowed by this manual for 72W and 54W girders with a specific number of strands were 

used as assumed extreme cases.  

 

8.1 Best Debonding Percentage for Each Girder 

FEA was used to study the debonding pattern needed for each girder with different 

numbers of strands. The maximum number of strands with 72W girders is 48 strands. 

Therefore, exploration of different debonding patterns for the 72W girder with 48 strands 

will be shown here but the same procedures were used to find the best debonding patterns for 

other strand quantities and for 54W beams. 
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Six debonding patterns were tried for the 72W girder with 48 strands. Results with one 

fully bonded strand pattern is also shown for comparison. In the following discussion “DB” 

represents debonding and the number next to it is the percentage of total strands that are 

debonded.  Finally, the letters A and B are for the same debonding percentage but different 

debonding patterns. The debonding patterns examined were as follow. 

 DB 0: All strands are bonded at the girder end. 8 strands were draped. (Figure 8-1a) 

 DB 38: 38 % of all strands were debonded. They start to get bonded after 3ft., 6ft. and 

9ft. from the girder end. 8 strands were draped. (Figure 8-1b) 

 DB 42_A: 42 % of all strands were debonded. They start to get bonded after 3ft., 6ft. 

and 9ft. from the girder end. 8 strands were draped. (Figure 8-1c) 

 DB 42_B: 42 % of all strands were debonded. They start to get bonded after 3ft., 6ft. 

and 9ft. from the girder end. 6 strands were draped. (Figure 8-1d) 

 DB 46: 46 % of all strands were debonded. They start to get bonded after 3ft., 6ft. and 

9ft. from the girder end. 8 strands were draped. (Figure 8-1e) 

 DB 50_A: 50 % of all strands were debonded. They start to get bonded after 3ft., 6ft. 

and 9ft. from the girder end. 8 strands were draped. (Figure 8-1f) 

 DB 50_B: 50 % of all strands were debonded. They start to get bonded after 3ft., 6ft. 

and 9ft. from the girder end. No strands were draped. (Figure 8-1g) 
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Figure 8-3. Maximum principal strain at horizontal and Y crack region from each girder. 
(Note: A fully bonded strand pattern resulted in maximum horizontal and Y-crack strains of 

1243 and 2734 respectively.) 

Since inclined cracks are a result of draped strands, reducing the number of draped 

strands (DB42A to 42B) helped to get of these cracks. Also, strain around the Y crack region 

decreased with fewer draped stands because of the increase in compression in the mid-region 

of the bottom flange with strands present that otherwise would have been draped. On the 

other hand, the larger bottom flange resultant prestress force increased the tensile strains in 

the horizontal web cracking region.  

 In the web zone, higher levels of debonding reduced the maximum tensile strains. 

This result is anticipated because bonding fewer strands close to the end will reduce the 

moment magnitude in the web region induced by combined eccentric draped and straight 

strands. Likewise, debonding the strands close to the bottom flange edges decreases the 

eccentricity about the flange mid- cross section, leading to have smaller Y crack inducing 
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tensile strains. If this strategy is not followed, the strains causing Y cracking will increase by 

the range of 200-250 με.  

  Following these procedures, effective debonding patterns were tried and found for 

other 72W strand amounts and for 54W girders. In all cases the aim was to limit the concrete 

tension strains to 150 με, but some of the values are just above that limit, which was deemed 

acceptable.  

It was found that the desired debonding percentage is the same for different girders 

(72W and 54W) when the same number of strands are used. This is logical because both 

girders have the same size bottom flanges and web widths.  

Table 8-1 and Figure 8-4 show the best debonding percentages for 72W and 54W 

girders with different numbers of strands and their maximum tensile strains at horizontal and 

Y cracking regions; and the best debonding patterns, respectively. The work for determining 

these other debonding patterns is shown in the Appendix. Drawings of each of these selected 

patterns are also in Figure 8-4 and could serve as a basis for creating alternative WisDOT 

Bridge Manual Standards 19.16 and 19.18.   
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girder spacing for the other girders analyzed were not known and the shear capacities could 

not be checked.  

The results of the debonding study showed that debonding patterns, with careful 

selection, brought the concrete tension strains below the elastic cracking limit for the crack 

prone zones. Draping six strands instead of eight helped to eliminate Y cracks but the strains 

around the horizontal web crack region increased. Also, a no draped strand girder design with 

50% debonding is effective for Y crack elimination but not for horizontal cracks. Since the 

horizontal web cracks are not as critical as Y cracks, the no draped strand design may be 

preferred. Under added vertical loading, over the girder weight alone, the web cracks tend to 

close but the Y-cracks actually widen. Since the Y crack is in the critical region where strand 

corrosion occurs, their elimination is essential. 

Placement of shielding over strand during fabrication, to create debonding, adds some 

difficulty to the construction process. Long lengths of shielding sleeve (over 10 ft.) are more 

difficult to place than short lengths. Hence it is desirable from a construction viewpoint, as 

well as for shear strength, to keep debonded lengths short. Placing sleeves over interior 

strands is more difficult than exterior, but AASHTO requires that exterior strand in each row 

should not be debonded. Limited wicking of cement paste into the sleeves may occur, but the 

bond developed is usually broken when the strand is released with careful sleeve placement 

and sealing.  
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 In this Chapter, recommended debonding patterns for each girder were presented. 

Debonding affects the shear capacity at critical end locations so when debonding is used, 

shear capacities should be checked for the specific span and girder loading pattern to insure 

sufficient shear capacity. 
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9.  SUMMARY and CONCLUSIONS 

 

The main objective of this research was to recommend a method to control cracking at 

the ends of pretensioned girders, right after detensioning the strands, for the Wisconsin 

Department of Transportation (WisDOT). These cracks can cause durability problems in the 

long term and discourage engineers from designing deep and heavily prestressed girders. 

The girder ends should be modelled with nonlinear behavior due to cracks occurring and 

force redistribution. In most other studies on this topic, however, the anchorage zone 

materials were treated as linear. Accurate stress and strain distributions in this nonlinear 

cracked region were not found in the literature descriptions.  

The process in this study was to identify the strain pattern at the girder ends using 

nonlinear FEA and find strand debonding patterns that would likely eliminate bottom flange 

cracking. The verification of the nonlinear FEA was done by using test data and the 

quantitative correlation of the FEA results with field data was found satisfactory. The ability 

to predict crack locations analytically was good for both girders that were actually tested. 

Then, the FEA was utilized to examine the causes of cracking. After verifying that debonding 

eliminates cracking by examining the cause of cracks at the ends of the girders, 

recommended debonding patterns were found for 54W and 72W girders with different 

number of strands. The ability of debonding to reduce the strains below or close to the 

theoretical cracking limit was shown. 
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FEA models of the 54W bonded girder were used to explain cracking at the ends by 

looking at the distribution and direction of the tensile strains. The inclined cracks were 

thought to be caused by the bursting pressure due to the draped strands. The web cracks were 

due to the eccentricity of prestress forces caused by the straight and draped strands over the 

girder depth. Finally, the Y cracks were triggered by the eccentricity of the prestress force 

induced by the bottom flange strands arranged over the width of the flange.  

Debonding is an effective method to eliminate cracks because it reduces the resultant 

prestressing force coming from strands, lessening the moment across the web and the 

transverse bending of the bottom flange.  The web cracks and the bottom flange Y cracks can 

be eliminated by the debonding. The stresses of reinforcing bars used to control cracking at 

the girder end remain below the yield level when prestress forces are applied. Vertical web 

re-bars within 12 in. from the girder end are the only bars effective in controlling the width of 

web cracks when debonding is not used. The bursting stirrups placed around the bottom 

flange strands are ineffective in controlling the Y crack widths, without debonding, because 

the epoxy coatings reduce the concrete to steel bond.  

The results of the debonding study showed that debonding patterns, with careful 

consideration of selection, greatly reduce concrete tension strains to below the elastic 

cracking limit for the crack prone zones. Draping six strands instead of eight aids in 

eliminates Y cracks. Designing with no draped strands and debonding 50% of the strand is 

effective for eliminating Y cracks in the girders with the largest number of strands.   The 

recommended debonding patterns for Wisconsin 54W and 72W girders, with various strand 
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content are identified. Debonding can affect the shear capacity at the girder end so when 

debonding is used, shear capacities should be carefully checked.  
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9.  APPENDIX 

CHAPTER 4 Appendix: 

- Compression Behavior for bonded 72W girder: 

Compression by FIB 2010 (Inelastic range) and AASHTO (elastic range) 

                 

  
INPUT: Specified design strength or cylinder 

strength, f'c =  
  7808 psi       

   Characteristic strength, cylinder, fck =    45.8 MPa       

   Closest concrete grade corresponding to fck C 50         

   Error between fck and concrete grade, % =    -8.3         

                 

       US Units SI Units   

   Mean value of Compressive Strength, fck + ∆f,  fcm = 7808 psi 58.0 MPa   

  
Characteristic strength (cylinder) or Concrete 

grade number, 
fck =  7252 psi 50 MPa   

  
Strain at maximum compressive stress, Table 

5.1.8, 
εcl= -0.0026   -0.0026     

   η = εc / εcl,   η = variable   variable     

   Plasticity number, Eci/Ecl, or Table 5.1.8, k =  1.73   1.73     
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Tangent Modulus, EcoαE[fcm/10]1/3, or Table 

5.1.8, 
Eci = 5602676 psi 38629 MPa   

   Constant, Eco = 3118311 psi 21500 MPa   

  
Aggregate type factor, (1 for quartzite 

aggregates), 
αE 1   1     

  
Secant Modulus from origin to the peak, fcm/εc1, 

or Table 5.1.8 
Ecl = 3235457.4 psi 22308 MPa   

   Ultimate strain, εclim = -3.40E-03   -3.40E-03     

   ∆f, constant ∆f =  1160 psi 8 MPa   

   Strain,  εc = variable   variable     

   Stress, -fcm [(kη - η2)/(1+(k - 2)η)] for εc < εclim σc =  variable   variable     

Table 0-1. Compression Behavior for bonded 72W girder. 

Input for Abaqus: 

ABAQUS INPUT 

                       

  
1. Assume concrete behaves elastic up to 40% of 
ultimate strength          

  
Input: use linear Ec 
(AASHTO) up to σc =  3123.2 psi and 

ε 
= -5.86E-04  

                       

    
Abaqus input: 
Linear E =  5239994 psi          

                       

  
2. Assume concrete behaves inelastic above the strain corresponding to 40% of 
ultimate strength  

  
 Input: εinelastic = 
εtotal - εelastic for  ε > 

-
5.86E-

04        

                       

      

εctotal 

  

σc 

(psi)(yield 
stress) 

εcinelastic 

         

      0.00E+00   0   

L
inear -E

lastic R
ange based 

on A
A

SH
T

O
 E

 

       

      1.17E-04   614          

      2.34E-04   1229          

      3.52E-04   1843          

      4.69E-04   2457          

      5.86E-04   3072 0.0000        
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      7.03E-04   3586 0.0001 

N
onlinear - Inelastic R

ange based on FIB
 M

odel 

       

      8.21E-04   4108 0.0002        

      9.38E-04   4606 0.0004        

      1.06E-03   5079 0.0005        

      1.17E-03   5527 0.0006        

      1.29E-03   5947 0.0007        

      1.41E-03   6340 0.0008        

      1.52E-03   6703 0.0009        

      1.64E-03   7035 0.0011        

      1.76E-03   7336 0.0012        

      1.88E-03   7603 0.0013        

      1.99E-03   7835 0.0014        

      2.11E-03   8031 0.0015        

      2.23E-03   8188 0.0016        

      2.34E-03   8305 0.0018        

      2.46E-03   8380 0.0019        

      2.58E-03   8411 0.0020        

      2.70E-03   8396 0.0021        

      2.81E-03   8332 0.0022        

      2.93E-03   8217 0.0023        

      3.05E-03   8047 0.0025        

      3.17E-03   7821 0.0026        

      3.28E-03   7535 0.0027        

      3.40E-03   7185 0.0028        
Table 0-2. Input for compression behavior for bonded 72W girder. 

- Tensile Behavior of the same girder: 

Tension by FIB 2010 (inelastic range) and AASHTO (elastic range) 
                     

    
Direct Tensile Strength, 

AASHTO, C.5.4.2.7 =   643 
psi          
= 4.43 Mpa      

    
Uniaxial Tensile Strength, 

FIB 2010, Equation 5.1.3 =   589 
psi          
= 4.1 Mpa      

    fct AASHTO /f fct FIB 2010 =   1.09   1.09        
                     
                     
        US Units SI Units      

    
Mean tensile strength of 

concrete, fctm =  643 psi 4.43 Mpa      
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Tangent Modulus, 
EcoαE[fcm/10]1/3, or Table 

5.1.8, Eci = 5602676 psi 38629 MPa      

    
0.9 x mean tensile strength of 

concrete, 
0.9*fctm 
=  578 psi 3.99 Mpa      

    
0.15 x mean tensile strength 

of concrete, 
0.20*fctm 
=  129 psi 0.89 Mpa      

    
Crack opening for σck = 

0.20*fctm, GF/fctm, wl=  0.00132912 in 0.034 mm      

    
Crack opening for σct = 0, 

5GF/fctm, wc = 0.00664558 in 0.169 mm      

    
Mean value of Compressive 

Strength, fcm = 7808 psi 53.8 MPa      

    Fracture energy, 73fcm
0.18, GF =  0.854 

Lbf 
in/in2 150 Nm/m2      

    Tensile strain, εct =  variable - variable -      
    Crack opening, w =  variable in variable mm      

    
Tensile stress for w<wl, 

fctm(1-0.8w/wl), σct =  variable psi variable MPa      

    
Tensile stress for wl<w<wim, 

fctm(0.25-0.05w/wl), σct =  variable psi variable MPa      

Table 0-3. Tensile behavior for bonded 72W girder. 

Abaqus input: 

1. Assume concrete behaves elastic under ultimate tensile strength 
Input: use linear Ec 
(AASHTO) up to σ = 643 psi and 

            

  Abaqus input: Linear E =  5239994 psi   

            

2. Assume tension softening beyond the ultimate tensile strenght 

 Input: displacement = w 

            
    σc (psi)(yield stress) Displacement (in)     

    643 0.000000     

    591 0.000133     

    540 0.000266     

    488 0.000399     

    437 0.000532     

    386 0.000665     

    334 0.000797     

    283 0.000930     
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    231 0.001063     

    180 0.001196     

    129 0.001329     

    116 0.001861     

    103 0.002392     

    90 0.002924     

    77 0.003456     

    64 0.003987     

    51 0.004519     

    39 0.005051     

    26 0.005582     

    13 0.006114     
Table 0-4. Input for tensile behavior for bonded 72W girder. 

 

CHAPTER 8 Appendix:  

Different Debonding work done for 54W and 72W girders. 

    72W Girder 54W Girders 

Number 
of 

Strands 

Strand 
debonding 

percentage -% 

Max. 
tension 
strain in 

web region - 
με 

Max. 
tension 
strain in 
Y-crack 
region- 
με 

Max. 
tension 
strain in 

web region - 
με 

Max. 
tension 
strain in 
Y-crack 
region- 
με 

48 38 280 215 - - 

48 42 190 177 - - 

48 42 232 153 - - 

48 46 165 163 - - 

48 50 210 155 - - 

48 50 134 151 - - 

46 43 173 171 - - 

46 43 213 154 - - 

46 48 236 128 - - 

46 48 151 157 - - 

44 41 173 155 - - 

44 41 214 154 - - 
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44 45 150 142 - - 

44 50 225 147 - - 

42 38 176 134 219 125 

42 43 156 100 145 125 

40 35 - - 135 324 

40 40 154 123 128 130 

38 37 - - 140 169 

38 43 132 130 119 135 

36 33 161 150 163 147 

36 39 133 142 131 140 

34 29 156 143 153 144 

34 29 - - 153 144 

34 35 134 135 125 136 

32 31  142 102 131 94 

32 25  - - 182 119 

32 31  - - 129 123 

32 25  - - 180 129 

32 25  - - 179 123 

32 25  - - 177 152 

32 25  166 108 182 99 

32 31  - - 145 94 

30 33  133 104 133 90 

30 26  - - 176 115 

30 33  - - 133 119 

30 26  - - 176 125 

30 26  - - 176 118 

30 26  - - 175 149 

30 26  167 108 178 95 

30 33  - - 144 91 

28 29 140 135 142 121 

28 36 113 129 108 115 

26 23 138 141 149 140 

26 31 113 131 117 128 

Table 0-5. Debonding patterns tried on different girders. 

The debonding patterns are described by following half picture of 72W girder with 48 

strands. The draped strands were not shown in the picture as it belongs to the end of the 
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3ft),(S43-3ft),(S45-3ft),(S47-0ft) 

48 46 
(S13-9ft),(S22-9ft),(S23-9ft),(S24-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-

6ft),(S42-3ft),(S43-3ft),(S45-3ft) 

48 50 
(S13-9ft),(S22-9ft),(S23-9ft),(S25-9ft),(S26-9ft),(S32-6ft),(S33-6ft),(S35-

6ft),(S36-6ft),(S42-3ft),(S43-3ft),(S45-3ft),(S17,S27,S37,S47-0ft) 

48 50 
(S13-9ft),(S22-9ft),(S23-9ft),(S24-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S34-

9ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft) 

46 43 
(S13-9ft),(S22-9ft),(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-

3ft),(S43-3ft),(S45-3ft), (NS14) 

46 43 
(S13-9ft),(S22-9ft),(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-

3ft),(S43-3ft),(S45-3ft),(S47-0ft),(NS14) 

46 48 
(S13-9ft),(S22-9ft),(S23-9ft),(S25-9ft),(S26-9ft),(S32-6ft),(S33-6ft),(S35-
6ft),(S36-6ft),(S42-3ft),(S43-3ft),(S45-3ft),(S17,S27,S37,S47-0ft),(NS14) 

46 48 
(S13-9ft),(S22-9ft),(S23-9ft),(S25-9ft),(S26-9ft),(S32-6ft),(S33-6ft),(S35-

6ft),(S42-3ft),(S43-3ft),(S45-3ft),(NS14) 

44 41 
(S22-9ft),(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-

3ft),(S45-3ft), (NS13,NS14) 

44 41 
(S22-9ft),(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-

3ft),(S45-3ft),(S47-0ft),(NS13,NS14) 

44 45 
(S22-9ft),(S23-9ft),(S25-9ft),(S26-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-

3ft),(S43-3ft),(S45-3ft),(NS13,NS14) 

44 50 
(S22-9ft),(S23-9ft),(S25-9ft),(S26-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S36-

6ft),(S42-3ft),(S43-3ft),(S45-3ft),(S17,S27,S37,S47-0ft),(NS13,NS14) 

42 38 
(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-

3ft), (NS13,NS14,NS21) 

42 43 
(S22-9ft),(S23-9ft),(S25-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-

3ft),(S45-3ft), (NS13,NS14,NS21) 

40 35 
(S23-13.5ft),(S32-9ft),(S34-9ft),(S36-9ft),(S42-4.5ft),(S44-4.5ft),(S46-

4.5ft), (NS13,NS14,NS21,NS26) 

40 40 
(S22-9ft),(S24-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-

3ft), (NS13,NS14,NS21,NS26) 

38 37 
(S23-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS25,NS26) 

38 43 
(S22-9ft),(S24-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-

3ft), (NS13,NS14,NS21,NS25,NS26) 

36 33 
(S23-9ft),(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS24,NS25,NS26) 

36 39 
(S23-9ft),(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS24,NS25,NS26) 

34 29 
(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS23,NS24,NS25,NS26) 

34 29 
(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS23,NS24,NS25,NS26) 

34 35 
(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS23,NS24,NS25,NS26) 

32 31 
(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 25 
(S32-6ft),(S34-6ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 31 
(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 25  (S33-6ft),(S35-6ft),(S42-3ft),(S44-3ft), 
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(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 25 
(S33-6ft),(S34-6ft),(S42-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 25 
(S33-6ft),(S35-6ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 25 
(S32-6ft),(S34-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

32 31 
(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) 

30 33 
(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26)& ONDS 

30 26 
(S32-6ft),(S34-6ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 33 
(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 26 
(S33-6ft),(S35-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 26 
(S33-6ft),(S34-6ft),(S42-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 26 
(S33-6ft),(S35-6ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 26 
(S32-6ft),(S34-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

30 33 
(S32-6ft),(S33-6ft),(S35-6ft),(S42-3ft),(S43-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26) & ODSR 

28 29 
(S32-6ft),(S34-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26,NS36) & ODSR 

28 36 
(S32-6ft),(S34-6ft),(S42-3ft),(S43-3ft),(S45-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26,NS36)& ODSR 

26 23 
(S32-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26,NS35,NS36) & ODSR 

26 31 
(S32-6ft),(S34-6ft),(S42-3ft),(S44-3ft), 

(NS13,NS14,NS21,NS22,NS23,NS24,NS25,NS26,NS35,NS36) & ODSR 
Table 0-6. Description of debonding patterns tried on different girders. 
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